12 research outputs found

    A General Model of Dynamics on Networks with Graph Automorphism Lumping

    Get PDF
    In this paper we introduce a general Markov chain model of dynamical processes on networks. In this model, nodes in the network can adopt a finite number of states and transitions can occur that involve multiple nodes changing state at once. The rules that govern transitions only depend on measures related to the state and structure of the network and not on the particular nodes involved. We prove that symmetries of the network can be used to lump equivalent states in state-space. We illustrate how several examples of well-known dynamical processes on networks correspond to particular cases of our general model. This work connects a wide range of models specified in terms of node-based dynamical rules to their exact continuous-time Markov chain formulation

    Exact analysis of summary statistics for continuous-time discrete-state Markov processes on networks using graph-automorphism lumping

    Get PDF
    We propose a unified framework to represent a wide range of continuous-time discrete-state Markov processes on networks, and show how many network dynamics models in the literature can be represented in this unified framework. We show how a particular sub-set of these models, referred to here as single-vertex-transition (SVT) processes, lead to the analysis of quasi-birth-and-death (QBD) processes in the theory of continuous-time Markov chains. We illustrate how to analyse a number of summary statistics for these processes, such as absorption probabilities and first-passage times. We extend the graph-automorphism lumping approach [Kiss, Miller, Simon, Mathematics of Epidemics on Networks, 2017; Simon, Taylor, Kiss, J. Math. Bio. 62(4), 2011], by providing a matrix-oriented representation of this technique, and show how it can be applied to a very wide range of dynamical processes on networks. This approach can be used not only to solve the master equation of the system, but also to analyse the summary statistics of interest. We also show the interplay between the graph-automorphism lumping approach and the QBD structures when dealing with SVT processes. Finally, we illustrate our theoretical results with examples from the areas of opinion dynamics and mathematical epidemiology

    Sets, Relations, and Functions

    No full text
    corecore