7 research outputs found
Dose-related effects of alcohol on cognitive functioning
We assessed the suitability of six applied tests of cognitive functioning to provide a single marker for dose-related alcohol intoxication. Numerous studies have demonstrated that alcohol has a deleterious effect on specific areas of cognitive processing but few have compared the effects of alcohol across a wide range of different cognitive processes. Adult participants (N = 56, 32 males, 24 females aged 18–45 years) were randomized to control or alcohol treatments within a mixed design experiment involving multiple-dosages at approximately one hour intervals (attained mean blood alcohol concentrations (BACs) of 0.00, 0.048, 0.082 and 0.10%), employing a battery of six psychometric tests; the Useful Field of View test (UFOV; processing speed together with directed attention); the Self-Ordered Pointing Task (SOPT; working memory); Inspection Time (IT; speed of processing independent from motor responding); the Traveling Salesperson Problem (TSP; strategic optimization); the Sustained Attention to Response Task (SART; vigilance, response inhibition and psychomotor function); and the Trail-Making Test(TMT; cognitive flexibility and psychomotor function). Results demonstrated that impairment is not uniform across different domains of cognitive processing and that both the size of the alcohol effect and the magnitude of effect change across different dose levels are quantitatively different for different cognitive processes. Only IT met the criteria for a marker for wide-spread application: reliable dose-related decline in a basic process as a function of rising BAC level and easy to use non-invasive task properties.Mathew J. Dry, Nicholas R. Burns, Ted Nettelbeck, Aaron L. Farquharson and Jason M. Whit
Reliability of brain volume measurements: A test-retest dataset
Evaluation of neurodegenerative disease progression may be assisted by quantification of the volume of structures in the human brain using magnetic resonance imaging (MRI). Automated segmentation software has improved the feasibility of this approach, but often the reliability of measurements is uncertain. We have established a unique dataset to assess the repeatability of brain segmentation and analysis methods. We acquired 120 T1-weighted volumes from 3 subjects (40 volumes/subject) in 20 sessions spanning 31 days, using the protocol recommended by the Alzheimer's Disease Neuroimaging Initiative (ADNI). Each subject was scanned twice within each session, with repositioning between the two scans, allowing determination of test-retest reliability both within a single session (intra-session) and from day to day (inter-session). To demonstrate the application of the dataset, all 3D volumes were processed using FreeSurfer v5.1. The coefficient of variation of volumetric measurements was between 1.6% (caudate) and 6.1% (thalamus). Inter-session variability exceeded intra-session variability for lateral ventricle volume (P<0.0001), indicating that ventricle volume in the subjects varied between days
Critical analysis on the present methods for brain volume measurements in multiple sclerosis
Multiple Roles of Alu-Related Noncoding RNAs
Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions
