20 research outputs found

    A cost minimisation analysis in teledermatology: model-based approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although store-and-forward teledermatology is increasingly becoming popular, evidence on its effects on efficiency and costs is lacking. The aim of this study, performed in addition to a clustered randomised trial, was to investigate to what extent and under which conditions store-and-forward teledermatology can reduce costs from a societal perspective.</p> <p>Methods</p> <p>A cost minimisation study design (a model based approach) was applied to compare teledermatology and conventional process costs per dermatology patient care episode. Regarding the societal perspective, total mean costs of investment, general practitioner, dermatologists, out-of-pocket expenses and employer costs were calculated. Uncertainty analysis was performed using Monte Carlo simulation with 31 distributions in the used cost model. Scenario analysis was performed using one-way and two-way sensitivity analyses with the following variables: the patient travel distance to physician and dermatologist, the duration of teleconsultation activities, and the proportion of preventable consultations.</p> <p>Results</p> <p>Total mean costs of teledermatology process were €387 (95%CI, 281 to 502.5), while the total mean costs of conventional process costs were €354.0 (95%CI, 228.0 to 484.0). The total mean difference between the processes was €32.5 (95%CI, -29.0 to 74.7). Savings by teledermatology can be achieved if the distance to a dermatologist is larger (> = 75 km) or when more consultations (> = 37%) can be prevented due to teledermatology.</p> <p>Conclusions</p> <p>Teledermatology, when applied to all dermatology referrals, has a probability of 0.11 of being cost saving to society.</p> <p>In order to achieve cost savings by teledermatology, teledermatology should be applied in only those cases with a reasonable probability that a live consultation can be prevented.</p> <p>Trail Registration</p> <p>This study is performed partially based on PERFECT D Trial (Current Controlled Trials No.ISRCTN57478950).</p

    Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance

    Get PDF
    Salmonella enterica serovar Typhimurium is capable of swarming over semi-solid surfaces. Although its swarming behavior shares many readily observable similarities with other swarming bacteria, the phenomenon remains somewhat of an enigma in this bacterium since some attributes skew away from the better characterized systems. Swarming is quite distinct from the classic swimming motility, as there is a prerequisite for cells to first undergo a morphological transformation into swarmer cells. In some organisms, swarming is controlled by quorum sensing, and in others, swarming has been shown to be coupled to increased expression of important virulence factors. Swarming in serovar Typhimurium is coupled to elevated resistance to a wide variety of structurally and functionally distinct classes of antimicrobial compounds. As serovar Typhimurium differentiates into swarm cells, the pmrHFIJKLM operon is up-regulated, resulting in a more positively charged LPS core. Furthermore, as swarm cells begin to de-differentiate, the pmr operon expression is down-regulated, rapidly reaching the levels observed in swim cells. This is one potential mechanism which confers swarm cells increased resistance to antibiotics such as the cationic antimicrobial peptides. However, additional mechanisms are likely associated with the cells in the swarm state that confer elevated resistance to such a broad spectrum of antimicrobial agents

    Adaptive Management and the Value of Information: Learning Via Intervention in Epidemiology

    Get PDF
    Optimal intervention for disease outbreaks is often impeded by severe scientific uncertainty. Adaptive management (AM), long-used in natural resource management, is a structured decision-making approach to solving dynamic problems that accounts for the value of resolving uncertainty via real-time evaluation of alternative models. We propose an AM approach to design and evaluate intervention strategies in epidemiology, using real-time surveillance to resolve model uncertainty as management proceeds, with foot-and-mouth disease (FMD) culling and measles vaccination as case studies. We use simulations of alternative intervention strategies under competing models to quantify the effect of model uncertainty on decision making, in terms of the value of information, and quantify the benefit of adaptive versus static intervention strategies. Culling decisions during the 2001 UK FMD outbreak were contentious due to uncertainty about the spatial scale of transmission. The expected benefit of resolving this uncertainty prior to a new outbreak on a UK-like landscape would be £45–£60 million relative to the strategy that minimizes livestock losses averaged over alternate transmission models. AM during the outbreak would be expected to recover up to £20.1 million of this expected benefit. AM would also recommend a more conservative initial approach (culling of infected premises and dangerous contact farms) than would a fixed strategy (which would additionally require culling of contiguous premises). For optimal targeting of measles vaccination, based on an outbreak in Malawi in 2010, AM allows better distribution of resources across the affected region; its utility depends on uncertainty about both the at-risk population and logistical capacity. When daily vaccination rates are highly constrained, the optimal initial strategy is to conduct a small, quick campaign; a reduction in expected burden of approximately 10,000 cases could result if campaign targets can be updated on the basis of the true susceptible population. Formal incorporation of a policy to update future management actions in response to information gained in the course of an outbreak can change the optimal initial response and result in significant cost savings. AM provides a framework for using multiple models to facilitate public-health decision making and an objective basis for updating management actions in response to improved scientific understanding

    Scoping as a Means to Systematically Involve Patients and Public in Health Technology Assessment (HTA).

    No full text
    To improve accountability and comprehensiveness, patient and public involvement (PPI) is crucial throughout the various stages of HTA. However, little is known as to how this can be achieved in a systematic, culturally sensitive way

    Integrated assessment of home based palliative care with and without reinforced caregiver support: ‘A demonstration of INTEGRATE-HTA methodological guidances’ – Executive Summary

    No full text
    This comprehensive executive summary reports on a case study designed to demonstrate the application of a number of the key concepts and methods developed in the INTEGRATE-HTA project to the assessment of complex technologies. The case study focuses on models of home based palliative care with and without an additional element of caregiver support, known as reinforced and non-reinforced home based palliative care respectively
    corecore