33 research outputs found

    Contraction induced by glicentin on smooth muscle cells from the human colon is abolished by exendin (9-39).

    No full text
    International audienceGlicentin and glucagon-like peptide-1 (7-36) amide (GLP-1) are gut hormones released during digestion. Glicentin and GLP-1 slow down gastric emptying and glicentin can switch off the duodenojejunal fed motor pattern. The effect of glicentin on the motor activity of colon has never been reported in humans. Our aim was to determine if circular smooth muscle cells (SMC) from the human colon are target cells for glicentin or GLP-1, and if their motility is dependent upon these digestive hormones. METHODS: Twenty-two resections were performed on patients operated for colon adenocarcinoma. The SMC were isolated from colonic circular muscle layer and cell contraction was assessed. RESULTS: Glicentin caused a dose-related contraction of SMC, when GLP-1 determined a contraction of weak amplitude. Exendin-(9-39), described as a GLP-1 receptor antagonist, inhibited contraction due to glicentin or GLP-1. In contrast, on antral SMC from rabbit, GLP-1 exerts neither relaxation nor contraction; however, exendin-(9-39) dose dependently reduced the contractile activity of glicentin [glicentin EC(50) = 5 pM, exendin-(9-39) pA(2) = -9.36]. CONCLUSIONS: The circular muscle from the human colon is a target tissue for glicentin and GLP-1. Whereas glicentin is a long-life digestive hormone which would contribute to segmental contraction, the biological activity of GLP-1 remains unknown on this tissue. On the digestive smooth muscle, exendin-(9-39) behaved as an antagonist for two members of the glucagon-receptor family, GLP-1 and glicentin

    Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA

    No full text
    Assessment of KRAS status is mandatory in patients with metastatic colorectal cancer (mCRC) before applying targeted therapy. We describe here a blinded prospective study to compare KRAS and BRAF mutation status data obtained from the analysis of tumor tissue by routine gold-standard methods and of plasma DNA using a quantitative PCR-based method specifically designed to analyze circulating cell-free DNA (cfDNA). The mutation status was determined by both methods from 106 patient samples. cfDNA analysis showed 100% specificity and sensitivity for the BRAF V600E mutation. For the seven tested KRAS point mutations, the method exhibited 98% specificity and 92% sensitivity with a concordance value of 96%. Mutation load, expressed as the proportion of mutant alleles in cfDNA, was highly variable (0.5-64.1%, median 10.5%) among mutated samples. CfDNA was detected in 100% of patients with mCRC. This study shows that liquid biopsy through cfDNA analysis could advantageously replace tumor-section analysis and expand the scope of personalized medicine for patients with cancer
    corecore