184 research outputs found

    Identification and Characterization of a Nontypeable Haemophilus Influenzae Putative Toxin-Antitoxin Locus

    Get PDF
    Background: Certain strains of an obligate parasite of the human upper respiratory tract, nontypeable Haemophilus influenzae (NTHi), can cause invasive diseases such as septicemia and meningitis, as well as chronic mucosal infections such as otitis media. To do this, the organism must invade and survive within both epithelial and endothelial cells. We have identified a facilitator of NT(Hi) survival inside human cells, virulence-associated protein D (vapDHi, encoded by gene H10450). Both vapDHi and a flanking gene, H10451, exhibit the genetic and physical characteristics of a toxin/antitoxin ( TA) locus, with VapDHi serving as the toxin moiety and H10451 as the antitoxin. We propose the name VapXHi for the H10451 antitoxin protein. Originally identified on plasmids, TA loci have been found on the chromosomes of a number of bacterial pathogens, and have been implicated in the control of translation during stressful conditions. Translation arrest would enhance survival within human cells and facilitate persistent or chronic mucosal infections. Results: Isogenic mutants in vapDHi were attenuated for survival inside human respiratory epithelial cells (NCI-H292) and human brain microvascular endothelial cells (HBMEC), the in vitro models of mucosal infection and the blood-brain barrier, respectively. Transcomplementation with a vapDHi allele restored wild-type NTHi survival within both cell lines. A PCR survey of 59 H. influenzae strains isolated from various anatomical sites determined the presence of a vapDHi allele in 100% of strains. Two isoforms of the gene were identified in this population; one that was 91 residues in length, and another that was truncated to 45 amino acids due to an in-frame deletion. The truncated allele failed to transcomplement the NTHi vapDHi survival defect in HBMEC. Subunits of full-length VapDHi homodimerized, but subunits of the truncated protein did not. However, truncated protein subunits did interact with full-length subunits, and this interaction resulted in a dominant-negative phenotype. Although Escherichia coli does not contain a homologue of either vapDHi or vapXHi, overexpression of the VapDHi toxin in trans resulted in E. coli cell growth arrest. This arrest could be rescued by providing the VapXHi antitoxin on a compatible plasmid. Conclusion: We conclude that vapDHi and vapXHi may constitute a H. influenzae TA locus that functions to enhance NTHi survival within human epithelial and endothelial cells

    Failure of Interferon γ to Induce the Anti-Inflammatory Interleukin 18 Binding Protein in Familial Hemophagocytosis

    Get PDF
    Background: Familial hemophagocytosis (FHL) is a rare disease associated with defects in proteins involved in CD8+ T-cell cytotoxicity. Hyperactivation of immune cells results in a perilous, Th1-driven cytokine storm. We set out to explore the regulation of cytokines in an FHL patient who was clinically stable on low-dose immunosuppressive therapy after bone marrow transplantation over a six-month period. During this period, chimerism analyses showed that the fraction of host cells was between 1 and 10%. Both parents of the patient as well as healthy volunteers were studied for comparison. Methods/Principal Findings: Using ELISA, quantitative real-time PCR, and clinical laboratory methods, we investigated constitutive and inducible cytokines, polymorphisms, and clinical parameters in whole blood and whole blood cultures. Although routine laboratory tests were within the normal range, the chemokines IP-10 and IL-8 as well as the cytokine IL-27p28 were increased up to 10-fold under constitutive and stimulated conditions compared to healthy controls. Moreover, high levels of IFNgamma and TNFalpha were produced upon stimulation. Unexpectedly, IFNgamma induction of IL-18 binding protein (IL-18BP) was markedly reduced (1.6-fold vs 5-fold in controls). The patient's mother featured intermediately increased cytokine levels, whereas levels in the father were similar to those in the controls. Conclusions/Significance: Since IL-18 plays a major role in perpetuating hemophagocytosis, the failure of IFNgamma to induce IL-18BP may constitute a fundamental pathogenetic mechanism. Furthermore, increased production of IL-8 and IL-27 appears to be associated with this disease. Such dysregulation of cytokines was also found in the heterozygous parents, providing a novel insight into genotype-phenotype correlation of FHL which may encourage future research of this rare disease

    Nevoid basal cell carcinoma syndrome (Gorlin syndrome)

    Get PDF
    Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a hereditary condition characterized by a wide range of developmental abnormalities and a predisposition to neoplasms

    Ernst Theodor v. Brücke

    No full text

    PH und pharmakologische Wirkung

    No full text

    Ueber die Structur des lupösen Gewebes

    No full text
    n/

    Ueber die Structur des lupösen Gewebes

    No full text
    • …
    corecore