41 research outputs found
A DNA repair-independent role for alkyladenine DNA glycosylase in alkylation-induced unfolded protein response.
Alkylating agents damage DNA and proteins and are widely used in cancer chemotherapy. While cellular responses to alkylation-induced DNA damage have been explored, knowledge of how alkylation affects global cellular stress responses is sparse. Here, we examined the effects of the alkylating agent methylmethane sulfonate (MMS) on gene expression in mouse liver, using mice deficient in alkyladenine DNA glycosylase (Aag), the enzyme that initiates the repair of alkylated DNA bases. MMS induced a robust transcriptional response in wild-type liver that included markers of the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) known to be controlled by XBP1, a key UPR effector. Importantly, this response is significantly reduced in the Aag knockout. To investigate how AAG affects alkylation-induced UPR, the expression of UPR markers after MMS treatment was interrogated in human glioblastoma cells expressing different AAG levels. Alkylation induced the UPR in cells expressing AAG; conversely, AAG knockdown compromised UPR induction and led to a defect in XBP1 activation. To verify the requirements for the DNA repair activity of AAG in this response, AAG knockdown cells were complemented with wild-type Aag or with an Aag variant producing a glycosylase-deficient AAG protein. As expected, the glycosylase-defective Aag does not fully protect AAG knockdown cells against MMS-induced cytotoxicity. Remarkably, however, alkylation-induced XBP1 activation is fully complemented by the catalytically inactive AAG enzyme. This work establishes that, besides its enzymatic activity, AAG has noncanonical functions in alkylation-induced UPR that contribute to cellular responses to alkylation
Facial and dental alterations according to the breathing pattern
There is controversy in the literature about possible interaction of the respiratory mode with the facial and dental structures. OBJECTIVES: The aim of this study was to perform a longitudinal assessment of the changes in facial and dental structures in Angle's Class II, division 1 malocclusion individuals, divided according to the respiratory pattern (predominantly nasal or mouth), at two distinct moments of craniofacial development. MATERIAL AND METHODS: Pogonium and nose measurements were made on the lateral cephalometric tracings (LS'-Pog', LS'-B', B'-Pog', Pog'-PogTeg', Line NB, Pog-NB, N'-Prn, Prn-NPog, N-Prn-Sn, Prn-Sn-LS). Dental measurements were made on the plaster models (distances between the tips of the canine cusps and the tips of mesial cusps of the first molars) of 40 individuals aged 10 to 14 years (moment 1) and 13 to 16 years (moment 2), 23 being nose breathers (NB) and 17 being predominantly mouth breathers (MB). RESULTS: The Student's-t test and two-way ANOVA with repeated measures were applied to indicate differences between the mean values of these variables according to the moments and/or respiratory mode. CONCLUSIONS: There were alterations in the facial measurements, without interference of the breathing pattern. However, the breathing pattern infuenced dental alterations