48 research outputs found
TFOS Lifestyle: Impact of elective medications and procedures on the ocular surface
The word “elective” refers to medications and procedures undertaken by choice or with a lower grade of prioritization. Patients usually use elective medications or undergo elective procedures to treat pathologic conditions or for cosmetic enhancement, impacting their lifestyle positively and, thus, improving their quality of life. However, those interventions can affect the homeostasis of the tear film and ocular surface. Consequently, they generate signs and symptoms that could impair the patient's quality of life. This report describes the impact of elective topical and systemic medications and procedures on the ocular surface and the underlying mechanisms. Moreover, elective procedures performed for ocular diseases, cosmetic enhancement, and non-ophthalmic interventions, such as radiotherapy and bariatric surgery, are discussed. The report also evaluates significant anatomical and biological consequences of non-urgent interventions to the ocular surface, such as neuropathic and neurotrophic keratopathies. Besides that, it provides an overview of the prophylaxis and management of pathological conditions resulting from the studied interventions and suggests areas for future research. The report also contains a systematic review investigating the quality of life among people who have undergone small incision lenticule extraction (SMILE). Overall, SMILE refractive surgery seems to cause more vision disturbances than LASIK in the first month post-surgery, but less dry eye symptoms in long-term follow up
TFOS European Ambassador meeting: Unmet needs and future scientific and clinical solutions for ocular surface diseases
The mission of the Tear Film & Ocular Surface Society (TFOS) is to advance the research, literacy, and educational aspects of the scientific field of the tear film and ocular surface. Fundamental to fulfilling this mission is the TFOS Global Ambassador program. TFOS Ambassadors are dynamic and proactive experts, who help promote TFOS initiatives, such as presenting the conclusions and recommendations of the recent TFOS DEWS II™, throughout the world. They also identify unmet needs, and propose future clinical and scientific solutions, for management of ocular surface diseases in their countries. This meeting report addresses such needs and solutions for 25 European countries, as detailed in the TFOS European Ambassador meeting in Rome, Italy, in September 2019
The Chlamydia psittaci Genome: A Comparative Analysis of Intracellular Pathogens
Chlamydiaceae are a family of obligate intracellular pathogens causing a wide range of diseases in animals and humans, and facing unique evolutionary constraints not encountered by free-living prokaryotes. To investigate genomic aspects of infection, virulence and host preference we have sequenced Chlamydia psittaci, the pathogenic agent of ornithosis.A comparison of the genome of the avian Chlamydia psittaci isolate 6BC with the genomes of other chlamydial species, C. trachomatis, C. muridarum, C. pneumoniae, C. abortus, C. felis and C. caviae, revealed a high level of sequence conservation and synteny across taxa, with the major exception of the human pathogen C. trachomatis. Important differences manifest in the polymorphic membrane protein family specific for the Chlamydiae and in the highly variable chlamydial plasticity zone. We identified a number of psittaci-specific polymorphic membrane proteins of the G family that may be related to differences in host-range and/or virulence as compared to closely related Chlamydiaceae. We calculated non-synonymous to synonymous substitution rate ratios for pairs of orthologous genes to identify putative targets of adaptive evolution and predicted type III secreted effector proteins.This study is the first detailed analysis of the Chlamydia psittaci genome sequence. It provides insights in the genome architecture of C. psittaci and proposes a number of novel candidate genes mostly of yet unknown function that may be important for pathogen-host interactions
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Prediction of Ionic Liquids Properties through Molecular Dynamics Simulations
Ionic liquids (ILs) are a new generation of molten salts possessing unique physical and chemical properties, which have gained attention from the academic and industries researchers. The design of new products and processes requires the knowledge of transport and thermophysical properties, yet, due to the large number of potential ILs, their characterization by experimental means alone is not feasible. Computer simulations are being used with success for the prediction of structures and properties of many different molecular systems. Among different computational approaches, molecular dynamics simulation (MD) has proved to be capable of providing a good understanding at the molecular level of how the structure and properties of ILs are related. - See more at: http://www.eurekaselect.com/118935/article#sthash.VDpluw1J.dpu