402 research outputs found

    Functional Correlations of Pathogenesis-Driven Gene Expression Signatures in Tuberculosis

    Get PDF
    Tuberculosis remains a major health threat and its control depends on improved measures of prevention, diagnosis and treatment. Biosignatures can play a significant role in the development of novel intervention measures against TB and blood transcriptional profiling is increasingly exploited for their rational design. Such profiles also reveal fundamental biological mechanisms associated with the pathology of the disease. We have compared whole blood gene expression in TB patients, as well as in healthy infected and uninfected individuals in a cohort in The Gambia, West Africa and validated previously identified signatures showing high similarities of expression profiles among different cohorts. In this study, we applied a unique combination of classical gene expression analysis with pathway and functional association analysis integrated with intra-individual expression correlations. These analyses were employed for identification of new disease-associated gene signatures, identifying a network of Fc gamma receptor 1 signaling with correlating transcriptional activity as hallmark of gene expression in TB. Remarkable similarities to characteristic signatures in the autoimmune disease systemic lupus erythematosus (SLE) were observed. Functional gene clusters of immunoregulatory interactions involving the JAK-STAT pathway; sensing of microbial patterns by Toll-like receptors and IFN-signaling provide detailed insights into the dysregulation of critical immune processes in TB, involving active expression of both pro-inflammatory and immunoregulatory systems. We conclude that transcriptomics (i) provides a robust system for identification and validation of biosignatures for TB and (ii) application of integrated analysis tools yields novel insights into functional networks underlying TB pathogenesis

    Arrhythmogenic mechanisms in the isolated perfused hypokalaemic murine heart

    Get PDF
    AIM: Hypokalaemia is associated with a lethal form of ventricular tachycardia (VT), torsade de pointes, through pathophysiological mechanisms requiring clarification. METHODS: Left ventricular endocardial and epicardial monophasic action potentials were compared in isolated mouse hearts paced from the right ventricular epicardium perfused with hypokalaemic (3 and 4 mm [K(+)](o)) solutions. Corresponding K(+) currents were compared in whole-cell patch-clamped epicardial and endocardial myocytes. RESULTS: Hypokalaemia prolonged epicardial action potential durations (APD) from mean APD(90)s of 37.2 ± 1.7 ms (n = 7) to 58.4 ± 4.1 ms (n =7) and 66.7 ± 2.1 ms (n = 11) at 5.2, 4 and 3 mm [K(+)](o) respectively. Endocardial APD(90)s correspondingly increased from 51.6 ± 1.9 ms (n = 7) to 62.8 ± 2.8 ms (n = 7) and 62.9 ± 5.9 ms (n = 11) giving reductions in endocardial–epicardial differences, ΔAPD(90), from 14.4 ± 2.6 to 4.4 ± 5.0 and −3.4 ± 6.0 ms respectively. Early afterdepolarizations (EADs) occurred in epicardia in three of seven spontaneously beating hearts at 4 mm [K(+)](o) with triggered beats followed by episodes of non-sustained VT in nine of 11 preparations at 3 mm. Programmed electrical stimulation never induced arrhythmic events in preparations perfused with normokalemic solutions yet induced VT in two of seven and nine of 11 preparations at 4 and 3 mm [K(+)](o) respectively. Early outward K(+) current correspondingly fell from 73.46 ± 8.45 to 61.16±6.14 pA/pF in isolated epicardial but not endocardial myocytes (n = 9) (3 mm [K(+)](o)). CONCLUSIONS: Hypokalaemic mouse hearts recapitulate the clinical arrhythmogenic phenotype, demonstrating EADs and triggered beats that might initiate VT on the one hand and reduced transmural dispersion of repolarization reflected in ΔAPD(90) suggesting arrhythmogenic substrate on the other

    Empirical correlation of triggered activity and spatial and temporal re-entrant substrates with arrhythmogenicity in a murine model for Jervell and Lange-Nielsen syndrome

    Get PDF
    KCNE1 encodes the β-subunit of the slow component of the delayed rectifier K+ current. The Jervell and Lange-Nielsen syndrome is characterized by sensorineural deafness, prolonged QT intervals, and ventricular arrhythmogenicity. Loss-of-function mutations in KCNE1 are implicated in the JLN2 subtype. We recorded left ventricular epicardial and endocardial monophasic action potentials (MAPs) in intact, Langendorff-perfused mouse hearts. KCNE1−/− but not wild-type (WT) hearts showed not only triggered activity and spontaneous ventricular tachycardia (VT), but also VT provoked by programmed electrical stimulation. The presence or absence of VT was related to the following set of criteria for re-entrant excitation for the first time in KCNE1−/− hearts: Quantification of APD90, the MAP duration at 90% repolarization, demonstrated alterations in (1) the difference, ∆APD90, between endocardial and epicardial APD90 and (2) critical intervals for local re-excitation, given by differences between APD90 and ventricular effective refractory period, reflecting spatial re-entrant substrate. Temporal re-entrant substrate was reflected in (3) increased APD90 alternans, through a range of pacing rates, and (4) steeper epicardial and endocardial APD90 restitution curves determined with a dynamic pacing protocol. (5) Nicorandil (20 µM) rescued spontaneous and provoked arrhythmogenic phenomena in KCNE1−/− hearts. WTs remained nonarrhythmogenic. Nicorandil correspondingly restored parameters representing re-entrant criteria in KCNE1−/− hearts toward values found in untreated WTs. It shifted such values in WT hearts in similar directions. Together, these findings directly implicate triggered electrical activity and spatial and temporal re-entrant mechanisms in the arrhythmogenesis observed in KCNE1−/− hearts
    corecore