149 research outputs found

    Antikonvulzivno djelovanje Schiffovih baza- derivata isatina

    Get PDF
    Schiff bases of N-methyl and N-acetyl isatin derivatives with different aryl amines have been synthesized and screened for anticonvulsant activities against maximal electroshock (MES) and subcutaneous metrazole (ScMet). N-methyl-5-bromo-3-(p-chlorophenylimino) isatin 2 exhibited anticonvulsant activity in MES and ScMet with LD50 > 600 mg kg-1, showing better activity than the standard drugs phenytoin, carbamazepine and valproic acid. Thus, compound 2 may be chosen as a prototype for development of new anticonvulsants.Schiffove baze N-metil i N-acetil derivata izatina s različitim aromatskim aminima sintetizirane su i ispitane na sposobnost suzbijanja konvulzija uzrokovanih elektrošokom (MES) i subkutanom primjenom metrazola (ScMet). N-metil-5-bromo-3-(p-klorofenilimino) izatin 2 pokazao je nisku neurotoksičnost i jače antikonvulzivno djelovanje nego standardni antikonvulzivi fenitoin, karbamazepin i valproična kiselina. Zbog toga se spoj 2 može smatrati prototipom za razvoj novih antikonvulziva

    Synthesis and anticonvulsant activities of N-benzyl (2R)-2-acetamido-3-oxysubstituted propionamide derivatives

    Get PDF
    Lacosamide has been submitted for regulatory approval in the United States and Europe for the treatment of epilepsy. Previous synthetic methods did not permit the elaboration of the structure–activity relationship (SAR) for the 3-oxy site in lacosamide. We report an expedient five-step stereospecific synthesis for N-benzyl (2R)-2-acetamido-3-oxysubstituted propionamide analogs beginning with d-serine methyl ester. The procedure incorporated alkyl (e.g. methyl, primary, secondary, and tertiary) and aryl groups at this position. The SAR for the 3-oxy site showed maximal activity in animal seizure models for small 3-alkoxy substituents

    Merging the Structural Motifs of Functionalized Amino Acids and α-Aminoamides: Compounds with Significant Anticonvulsant Activities

    Get PDF
    Functional amino acids (FAAs) and α-aminoamides (AAAs) are two classes of antiepileptic drugs (AEDs) that exhibit pronounced anticonvulsant activities. We combined key structural pharmacophores present in FAAs and AAAs to generate a new series of compounds and document that select compounds exhibit activity superior to either the prototypical FAA (lacosamide) or the prototypical AAA (safinamide) in the maximal electroshock (MES) seizure model in rats. A representative compound, (R)-N-4′-((3″-fluoro)benzyloxy)benzyl 2-acetamido-3-methoxypropionamide ((R)-10), was tested in the MES (mice, ip), MES (rat, po), psychomotor 6 Hz (32 mA) (mice, ip), and hippocampal kindled (rat, ip) seizure tests providing excellent protection with ED50 values of 13, 14, ~10 mg/kg, and 12 mg/kg, respectively. In the rat sciatic nerve ligation model (ip), (R)-10 (12 mg/kg) provided an 11.2-fold attenuation of mechanical allodynia. In the mouse biphasic formalin pain model (ip), (R)-10 (15 mg/kg) reduced pain responses in the acute and the chronic inflammatory phases

    The Structure−Activity Relationship of the 3-Oxy Site in the Anticonvulsant ( R )- N -Benzyl 2-Acetamido-3-methoxypropionamide

    Get PDF
    Lacosamide ((R)-N-benzyl 2-acetamido-3-methoxypropionamide, (R)-1) is a low molecular weight anticonvulsant recently introduced in the United States and Europe for adjuvant treatment of partial-onset seizures in adults. In this study, we define the structure-activity relationship (SAR) for the compound's 3-oxy site. Placement of small non-polar, non-bulky substituents at the 3-oxy site provided compounds with pronounced seizure protection in the maximal electroshock (MES) seizure test with activities similar to (R)-1. The anticonvulsant activity loss that accompanied introduction of larger moieties at the 3-oxy site in (R)-1 was offset, in part, by including unsaturated groups at this position. Our findings were similar to a recently reported SAR study of the 4′-benzylamide site in (R)-1 (J. Med. Chem.2010, 53, 1288–1305). Together, these results indicate that both the 3-oxy and 4′-benzylamide positions in (R)-1 can accommodate non-bulky, hydrophobic groups and still retain pronounced anticonvulsant activities in rodents in the MES seizure model

    Defining the Structural Parameters That Confer Anticonvulsant Activity by the Site-by-Site Modification of ( R )- N ′-Benzyl 2-Amino-3-methylbutanamide

    Get PDF
    Primary Amino Acid Derivatives (PAADs) (N′-benzyl 2-substituted 2-amino acetamides) are structurally related to Functionalized Amino Acids (FAAs) (N′-benzyl 2- substituted 2-acetamido acetamides) but differ by the absence of the terminal N-acetyl group. Both classes exhibit potent anticonvulsant activities in the maximal electroshock seizure animal model and the reported structure-activity relationships (SARs) of PAADs and FAAs differ in significant ways. Recently, we documented that PAAD efficacy was associated with a hydrocarbon moiety at the C(2)-carbon, while in the FAAs, a substituted heteroatom one atom removed from the C(2)-center was optimal. Previously in this issue, we showed that PAAD activity was dependent upon the electronic properties of the 4′-N′-benzylamide substituent, while FAA activity was insensitive to electronic changes at this site. In this study, we prepared analogs of (R)-N′-benzyl 2-amino-3-methylbutanamide to identify the structural components for maximal anticonvulsant activity. We demonstrated that the SAR of PAADs and FAAs diverged at the terminal amide site and that PAADs had considerably more structural latitude in the types of units that could be incorporated at this position, suggesting that these compounds function according to different mechanism(s)

    Development and Characterization of Novel Derivatives of the Antiepileptic Drug Lacosamide That Exhibit Far Greater Enhancement in Slow Inactivation of Voltage-Gated Sodium Channels

    Get PDF
    The novel antiepileptic drug (R)-N-benzyl 2-acetamido-3-methoxypropionamide ((R)-lacosamide, Vimpat ((R)-1)) was recently approved in the United States and Europe for adjuvant treatment of partial-onset seizures in adults. (R)-1 preferentially enhances slow inactivation of voltage-gated Na+ currents, a pharmacological process relevant in the hyperexcitable neuron. We have advanced a strategy to identify lacosamide binding partners by attaching affinity bait (AB) and chemical reporter (CR) groups to (R)-1 to aid receptor detection and isolation. We showed that select lacosamide AB and AB&CR derivatives exhibited excellent activities similar to (R)-1 in the maximal electroshock seizure model in rodents. Here, we examined the effect of these lacosamide AB and AB&CR derivatives and compared them with (R)-1 on Na+ channel function in central nervous system (CNS) catecholaminergic (CAD) cells. Using whole-cell patch clamp electrophysiology, we demonstrated that the test compounds do not affect the Na+ channel fast inactivation process, that they were far better modulators of slow inactivation than (R)-1, and that modulation of the slow inactivation process was stereospecific. The lacosamide AB agents that contained either an electrophilic isothiocyanate ((R)-5) or a photolabile azide ((R)-8) unit upon AB activation gave modest levels of permanent Na+ channel slow inactivation, providing initial evidence that these compounds may have covalently reacted with their cognate receptor(s). Our findings support the further use of these agents to delineate the (R)-1-mediated Na+ channel slow inactivation process

    Synthesis and Anticonvulsant Activities of ( R )- N -(4′-Substituted)benzyl 2-Acetamido-3-methoxypropionamides

    Get PDF
    The structure-activity relationship (SAR) for the N-benzyl group in the clinical antiepileptic agent (R)-lacosamide ((R)-N-benzyl 2-acetamido-3-methoxypropionamide, (R)-3) has been explored. Forty-three compounds were prepared and then evaluated at the National Institute of Neurological Disorders and Stroke Anticonvulsant Screening Program for seizure protection in the maximal electroshock (MES) and subcutaneous Metrazol models. Comparing activities for two series of substituted aryl regioisomers (2′, 3′, 4′) showed that 4′-modified derivatives had the highest activity. Significantly, structural latitude existed at the 4′-site. The SAR indicated that non-bulky 4′-substituted (R)-3 derivatives exhibited superb activity, independent of their electronic properties. Activities in the MES test of several compounds were either comparable with or exceeded that of (R)-3, and surpassed the activities observed for the traditional antiepileptic agents phenytoin, phenobarbital, and valproate

    Antiseizure Activity of Novel γ-Aminobutyric Acid (A) Receptor Subtype-Selective Benzodiazepine Analogues in Mice and Rat Models

    Get PDF
    The antiseizure activity of benzodiazepines (BDZs) 1-5 in mice and rats as animal models is described. These BDZs have selective efficacy for α2β3γ2 and α3β3γ2 GABAA-receptors. Significant anticonvulsant activity with little or no motor impairment and therapeutic indexes (TI) of 2.8-44 (mice, ip) were observed for compounds 2-4 in the subcutaneous metrazole seizure (scMET) test. In rats orally (po) the TI was >5 to 105. These compounds represent novel leads in the search for anticonvulsants devoid of sedative, ataxic and amnestic side effects

    Fire Simulation and Cardiovascular Health in Firefighters

    Get PDF
    BACKGROUND: Rates of myocardial infarction in firefighters are increased during fire suppression duties, and are likely to reflect a combination of factors including extreme physical exertion and heat exposure. We assessed the effects of simulated fire suppression on measures of cardiovascular health in healthy firefighters. METHODS: In an open-label randomized crossover study, 19 healthy firefighters (age, 41±7 years; 16 males) performed a standardized training exercise in a fire simulation facility or light duties for 20 minutes. After each exposure, ex vivo thrombus formation, fibrinolysis, platelet activation, and forearm blood flow in response to intra-arterial infusions of endothelial-dependent and -independent vasodilators were measured. RESULTS: After fire simulation training, core temperature increased (1.0±0.1°C) and weight reduced (0.46±0.14 kg, P<0.001 for both). In comparison with control, exposure to fire simulation increased thrombus formation under low-shear (73±14%) and high-shear (66±14%) conditions (P<0.001 for both) and increased platelet-monocyte binding (7±10%, P=0.03). There was a dose-dependent increase in forearm blood flow with all vasodilators (P<0.001), which was attenuated by fire simulation in response to acetylcholine (P=0.01) and sodium nitroprusside (P=0.004). This was associated with a rise in fibrinolytic capacity, asymptomatic myocardial ischemia, and an increase in plasma cardiac troponin I concentrations (1.4 [0.8–2.5] versus 3.0 [1.7–6.4] ng/L, P=0.010). CONCLUSIONS: Exposure to extreme heat and physical exertion during fire suppression activates platelets, increases thrombus formation, impairs vascular function, and promotes myocardial ischemia and injury in healthy firefighters. Our findings provide pathogenic mechanisms to explain the association between fire suppression activity and acute myocardial infarction in firefighters. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01812317
    corecore