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Abstract
The antiseizure activity of benzodiazepines (BDZs) 1-5 in mice and rats as animal models is
described. These BDZs have selective efficacy for α2β3γ2 and α3β3γ2 GABAA-receptors.
Significant anticonvulsant activity with little or no motor impairment and therapeutic indexes (TI)
of 2.8-44 (mice, ip) were observed for compounds 2-4 in the subcutaneous metrazole seizure (scMET)
test. In rats orally (po) the TI was >5 to 105. These compounds represent novel leads in the search
for anticonvulsants devoid of sedative, ataxic and amnestic side effects.

Many of the commonly used benzodiazepines (BDZs) display good anticonvulsant activity
against acutely elicited seizures induced with either maximal electroshock (MES) and
pentylenetetrazole (MET).1-3 The anticonvulsant actions of BDZs have been utilized clinically
in patients to treat specific seizure types or conditions i.e. akinetic, myoclonic, absence variant
seizures as well as to help terminate status epilepticus or serial seizures.2 BDZ diazepam when
administrated intravenously, can be very effective for arresting status epilepticus.6 However,
oral administration of this drug is less effective because tolerance to the anticonvulsant effects
develops within a relatively short period.1,4 In addition to diazepam other BDZs that have
demonstrated anticonvulsant action are clonazepam, clorazepate, clobazam, lorazepam,
midazolam, and nitrazepam.5,6

In general, BDZs as a class offer many benefits as drug therapy.7 For example, they are rapidly
absorbed from the gastrointestinal tract and normally reach maximum blood concentrations
within one to two hours of ingestion. They readily cross the blood-brain barrier, and are rapidly
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distributed within the brain. Electrophysiological changes attributed to certain BDZs can be
detected as early as five minutes after intravenous injection.8 At clinically relevant doses the
BDZs do not induce significant liver microsomal enzymes that often can result in drug-drug
interactions.9

In general, they lack serious toxicity even when overdosed.1,4 Unfortunately, BDZs produce
many side effects such as drowsiness, somnolence, fatigue, ataxia, lethargy, sedation, muscle-
relaxation, amnesia and tolerance to the anticonvulsant effects which limit their use as chronic
anticonvulsant agents.1-3 These side effects along with the issue of tolerance which develops
from the extended use of these agents both in animal models and patients has been studied in
detail.1-6,10

Much work has been done in the search for new BDZs with improved pharmacological profiles;
it has been suggested that partial agonists at the γ-aminobutyric acid (A) receptor (GABAA)
would reduce and possibly eliminate the unwanted side effects.11 However, these preclinical
properties did not translate into clinical agents sufficiently free of side effects and tolerance
liability.12-14 An alternative approach is to develop non-sedating anticonvulsants that target
specific GABAA receptor subtype(s) involved in mediation of the anticonvulsant action but
not the sedative action.15,16 This selectivity for GABAA receptor-subtypes may be achieved
by selective efficacy.14 Those ligands which are agonists with subtype selectivity for α2- and
α3-GABAA receptors that also have reduced agonistic and/or exhibit antagonistic activity at
α1-GABAA receptors should provide ligands with anticonvulsant properties, but with reduced
sedative, ataxic and amnestic side effects.15,16 Among the ligands reported with α2 and/or
α3 subtype selectivity are pyrazolo- quinolinones,17 pyrazoles,18 pyridazines,19
pyridoindolones,20,21 pyridones,22 tetrahydroimidazo-pyrido-pyrimidinones,23 triazolo-
phthalazines,24 pyrazolopyridinones,25 imidazopyrimidines, and triazines.26

Recently, it has been shown that tolerance (in part) to the anticonvulsant effects of diazepam
is mediated by an interaction at the α1-subtype.27 Moreover, Rijnsoever, Mohler et. al.28 have
shown that manifestation of tolerance to the motor-depressant action of diazepam depends on
the chronic activation of two competitive mechanisms orchestrated by α1- and α5-GABAA
receptors, respectively. They also demonstrated that tolerance to the sedative action of
diazepam was accompanied by a 15% reduction of α5-GABAA receptors in the dentate gyrus.
28,29

Because the BDZ scaffold is generally nontoxic with good logP properties, efforts have
centered here on a selected group of novel 8-substituted triazolo- and imidazobenzodiazepines
as shown in Figure 1,30 which exhibit low efficacy at α1- and α5-subtypes. The dose response
curves for the stimulation of GABA-induced currents by diazepam and BDZs 1-5 in oocytes,
which expressed GABAA receptors of the subtypes α1β3γ2, α2β3γ2, α3β3γ2, and α5β3γ2 are
illustrated in Figure 2. It is clear the efficacy at α1β3γ2 and α5β3γ2 subtypes is low, especially
for ligands 2 and 3, as compared to diazepam. Although the efficacy at α1 and α5 are low for
1, the potency also remains too low (for useful or serious consideration). The acetylene-halogen
switch employed for 1-3 was also extended to triazolam analog 4, but not to the control ligand
5.

Examination of the initial anticonvulsant screen (Table 1, 100mg/kg) on ligands 1-5
(administered as free bases) at the National Institute of Neurological Disorders and Stroke
(NINDS) under the Anticonvulsant Screening Program (ASP) indicated that the 8-
acetyleno-2′-pyridoimidazobenzodiazepine 2 had the most significant antiseizure profile in
mice when administrated ip. It raised the seizure threshold level induced by subcutaneous
metrazole (scMET) in 60% of mice (3/5) with no motor impairment as indicated by the rotorod
paradigm test (TOX). Ligand 2 also appeared to have a relatively rapid onset and short duration
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of action because the antiseizure protection was absent after 4.0 hours. Toxicity in this study
was based on motor impairement (locomotor, rotorod). Ligand 2 lacked activity against MES
induced seizures in keeping with low efficacy of 2 at α1β3γ2 subtypes.14,19

The antiseizure activity in rat animal models for MES, scMET and toxicity showed that ligands
2-5 significantly increased the seizure threshold level of scMET in both oral (po) and
intraperitoneal (ip) route of administration (Table 2). Using rats via the po routes the protection
ranged from a median effective dose (ED50) of 1.58mg/kg for 4 to 98.5mg/kg for 2, with the
ED50 for 3 falling in the middle (Table 3). For 2 and 3 no TOX was observed in rats that were
dosed up to 500mg/kg via either the po or ip routes of administration (Table 3). For 2′-pyrido
analog 2 in rats, the protection was 100% dosed orally and 88% via the ip route after 0.5 hour.
After four hours ligand 2 offered no protection with po dosing but maintained 63% protection
via ip dosing. Imidazobenzodiazepine 3 exhibited similar protection orally and ip; but for a
longer duration as compared to 2. Ligand 4 was the most potent of all the ligands tested orally
in rats (Table 2), with 50% protection over a period of 4h at a lower dose of 15mg/kg. Ligand
8-iodo-imidazobenzodiazepine 5 showed no activity in mice dosed ip (data not shown). Since
the calculated logP for 5 (4.59) was significantly greater than 2 (2.48), it is possible that 5
crosses the blood brain barrier more rapidly than 2, reaches a maximum effective concentration
more rapidly and is consequently metabolized more rapidly when admistered ip. Even though
2 would be expected to be more bioavailable (especially) po, it may not cross the blood brain
barrier as rapidly as 5. The ligand 5 was not subjected to quantification of antiseizure activity,
but activity was evident (5/6) at 50mg/kg in rats dosed orally with no observed TOX at that
dose.

The quantitative antiseizure effects of BDZs 2, 3, and 4 are shown in Table 3.
Imidazobenzodiazepine 2 was much more active in the scMET seizure model than in MES
which suggested that it may have potential use for the treatment of absence and myoclonic
seizures.31 The ED50 for scMET for ligand 2 was smaller than that of carbamazepine and
phenytoin. Moreover, the median toxic (sedating) dose (TD50) for 2 (>500 mg/kg) in mice ip
provided a calculated therapeutic index (TI) greater than 30 in mice ip. Similarly, 3 showed
better activity against scMET than MES in mice ip and rat po with ED50s smaller than those
reported for carbamazepine and phenytoin (Table 3). However in the MES, both carbamazepine
and phenytoin have better ED50s than ligand 3. The TD50 of 3 was >400 mg/kg in both tests
which provided a calculated TI of 44 in mice ip and 21 in rats orally (Table 3).
Triazolobenzodiazepine 4 showed the most potent activity of the ligands tested for scMET in
mice and rats. However, only in rats via oral admistration was a significant separation of
protective effects and motor impairment found (Tables 2, 3).

To further characterize the anticonvulsant activity of some of these novel BDZs, a hippocampal
kindling screen was performed on 2-4. The hippocampal kindling screen is a useful adjunct to
the traditional MES and scMET tests for identification of a substance’s potential utility for
treating complex partial seizures.32 BDZs 2-4 appeared to block the kindle motor seizure as
shown by the reduction of the seizure score from 4-5 to 3 (Table 4). No toxic effects were
observed as indicated by the lack of motor impairment on the rats tested.

It is clear from the rat po data (Table 2), that 2 has a shorter half life than 3, presumably because
of difference in esterase enzyme interactions with the two molecules. Because the half-lives
of such esters in primates and humans would be much longer, ligands 2-4 represent potential
anticonvulsant agents with little or no side effects. Certainly the efficacy profiles of 2 and 3
are consistent with this finding.

In conclusion, these novel BDZs possess significant antiseizure activity in the scMET test in
mice and rats and showed minimal TOX. Therefore, ligands 2 and 3 appear to provide
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antiseizure effects with minimal or no TOX by maintaining a good selectivity between α2/α3
versus α1 subtypes and an efficacy at α1 that is lower than that displayed by diazepam. The
efficacy level at α1 appears to be of critical importance to avoid motor impairment in mice and
rats, as predicted by Möhler et. al.28 This was demonstrated by the fact that a slightly higher
efficacy at α1 (282%) appears to result in some minimal TOX for ligand 3 while ligand 2
(233%) had no TOX. Ligand 2 appears to have high enough efficacy at α2 and α3 to provide
significant antiseizure activity with no toxicity in vivo (mice and rats) due to its lower efficacy
at α1 subtypes compared to diazepam. Because of its simultaneous reduced efficacy at α1- and
α5-GABAA receptors, ligand 2 represents an important potential anticonvulsant agent. Recent
data from NINDS, indicates that on chronic dosing (5 days), tolerance to the anticonvulsant
effects of ligand 2 did not develop.33

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Benzodiazepines (BDZs) 1-5.
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Figure 2.
Dose response curves for diazepam and 1-5 in oocytes expressing α1β3γ2 (■), α2β3γ3 (▲),
α3β3γ2(◆) or α5β3γ2 (▼) GABAA receptors. Values are presented as mean ± SEM of at least
four oocytes from at least two batches. A concentration of 1μM of diazepam resulted in 345
±27%, 508±29%, 776±44% and 420±12% of control current (at GABA EC3) in α1β3γ2,
α2β3γ2, α3β3γ2 and α5β3γ2 receptors, respectively. A concentration of 1μM of 2 resulted in
167±9%, 313±9%, 346±9% and 174±6% of control current (at GABA EC3) in α1β3γ2, α2β3γ2,
α3β3γ2 and α5β3γ2 receptors, respectively. A concentration of 1μM of 3 resulted in 248±14%,
410±19%, 596±43% and 246±4% of control current (at GABA EC3) in α1β3γ2, α2β3γ2,
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α3β3γ2 and α5β3γ2 receptors, respectively. All these values were significantly different from
the respective control currents (p<0.01, Student’s t-test).
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Table 1
Assessment of Antiseizure Activity on Benzodiazepine (BDZ) Ligand 2 at 100mg/kg after 0.5 and 4.0 h in Mice via
IP

BDZ Time
(hour) MES Mice IP

scMET TOX

2 0.5 0/3 3/5 0/8

2 4.0 0/3 0/1 0/4

Results indicate number protected or toxic/number tested.

Refer to Table 3 for abbreviations.
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