30,730 research outputs found
Strain energy calculations of hexagonal boron nanotubes: An ab-initio approach
An ab initio calculations have been carried out for examining the curvature
effect of small diameter hexagonal boron nanotubes. The considered
conformations of boron nanotubes are namely armchair (3,3), zigzag (5,0) and
chiral (4,2), and consist of 12, 20, and 56 atoms, respectively. The strain
energy is evaluated in order to examine the curvature effect. It is found that
the strain energy of hexagonal BNT strongly depends upon the radius, whereas
the strain energy of triangular BNTs depends on both radius and chirality.Comment: 7 pages, 4 figure
Nonuniversal exponents in sandpiles with stochastic particle number transfer
We study fixed density sandpiles in which the number of particles transferred
to a neighbor on relaxing an active site is determined stochastically by a
parameter . Using an argument, the critical density at which an
active-absorbing transition occurs is found exactly. We study the critical
behavior numerically and find that the exponents associated with both static
and time-dependent quantities vary continuously with .Comment: Some parts rewritten, results unchanged. To appear in Europhys. Let
Eigenvalue spectrum for single particle in a spheroidal cavity: A Semiclassical approach
Following the semiclassical formalism of Strutinsky et al., we have obtained
the complete eigenvalue spectrum for a particle enclosed in an infinitely high
spheroidal cavity. Our spheroidal trace formula also reproduces the results of
a spherical billiard in the limit . Inclusion of repetition of each
family of the orbits with reference to the largest one significantly improves
the eigenvalues of sphere and an exact comparison with the quantum mechanical
results is observed upto the second decimal place for . The
contributions of the equatorial, the planar (in the axis of symmetry plane) and
the non-planar(3-Dimensional) orbits are obtained from the same trace formula
by using the appropriate conditions. The resulting eigenvalues compare very
well with the quantum mechanical eigenvalues at normal deformation. It is
interesting that the partial sum of equatorial orbits leads to eigenvalues with
maximum angular momentum projection, while the summing of planar orbits leads
to eigenvalues with except for L=1. The remaining quantum mechanical
eigenvalues are observed to arise from the 3-dimensional(3D) orbits. Very few
spurious eigenvalues arise in these partial sums. This result establishes the
important role of 3D orbits even at normal deformations.Comment: 17 pages, 7 ps figure
Anomalous low level of cosmic ray intensity decreases observed during 1980
Past studies have revealed solar cycle changes in the sunspot activity, as well as in many other solar parameters, such as, solar flares and solar coronal holes. These solar features in turn produce the observed cyclic variations in the interplanetary plasma and fields. Both the cosmic ray intensity as well as the intensity of geomagnetic disturbances are affected by the interplanetary changes and produce 11/22 year periodicity. An anomalous situation has been noticed during the year 1980 (period of high sunspot activity), when both the geomagnetic disturbance index Ap, as well as the magnitude and number of Forbush decreases as small. Such an anomaly occurs, in spite of the fact that both the sunspot numbers and the energetic solar flares are almost maximum during the present solar cycle
Economic Efficiency, Distributive Justice and Liability Rules
The main purpose of this paper is to show that the conflict between the considerations involving economic efficiency and those of distributive justice, in the context of assigning liability, is not as sharp as is generally believed to be the case. The condition of negligence liability which characterizes efficiency in the context of liability rules has an all-or-none character. Negligence liability requires that if one party is negligent and the other is not then the liability for the entire accident loss must fall on the negligent party. Thus within the framework of standard liability rules efficiency requirements preclude any non-efficiency considerations in cases where one party is negligent and the other is not. In this paper it is shown that a part of accident loss plays no part in providing appropriate incentives to the parties for taking due care and can therefore be apportioned on non-efficiency considerations. For a systematic analysis of efficiency requirements, a notion more general than that of a liability rule, namely, that of a decomposed liability rule is introduced. A complete characterization of efficient decomposed liability rules is provided in the paper. One important implication of the characterization theorems of this paper is that by decomposing accident loss in two parts, the scope for distributive considerations can be significantly broadened without sacrificing economic efficiency.Tort Law, Liability Rules, Decomposed liability Rules, Efficient Rules, Nash Equilibria, Negligence Liability, Distributive Justice
Activation gaps for the fractional quantum Hall effect: realistic treatment of transverse thickness
The activation gaps for fractional quantum Hall states at filling fractions
are computed for heterojunction, square quantum well, as well as
parabolic quantum well geometries, using an interaction potential calculated
from a self-consistent electronic structure calculation in the local density
approximation. The finite thickness is estimated to make 30% correction
to the gap in the heterojunction geometry for typical parameters, which
accounts for roughly half of the discrepancy between the experiment and
theoretical gaps computed for a pure two dimensional system. Certain model
interactions are also considered. It is found that the activation energies
behave qualitatively differently depending on whether the interaction is of
longer or shorter range than the Coulomb interaction; there are indications
that fractional Hall states close to the Fermi sea are destabilized for the
latter.Comment: 32 pages, 13 figure
Tunnel transport and interlayer excitons in bilayer fractional quantum Hall systems
In a bilayer system consisting of a composite-fermion Fermi sea in each
layer, the tunnel current is exponentially suppressed at zero bias, followed by
a strong peak at a finite bias voltage . This behavior, which is
qualitatively different from that observed for the electron Fermi sea, provides
fundamental insight into the strongly correlated non-Fermi liquid nature of the
CF Fermi sea and, in particular, offers a window into the short-distance
high-energy physics of this state. We identify the exciton responsible for the
peak current and provide a quantitative account of the value of .
The excitonic attraction is shown to be quantitatively significant, and its
variation accounts for the increase of with the application of an
in-plane magnetic field. We also estimate the critical Zeeman energy where
transition occurs from a fully spin polarized composite fermion Fermi sea to a
partially spin polarized one, carefully incorporating corrections due to finite
width and Landau level mixing, and find it to be in satisfactory agreement with
the Zeeman energy where a qualitative change has been observed for the onset
bias voltage [Eisenstein et al., Phys. Rev. B 94, 125409 (2016)]. For
fractional quantum Hall states, we predict a substantial discontinuous jump in
when the system undergoes a transition from a fully spin
polarized state to a spin singlet or a partially spin polarized state.Comment: 14 pages, 14 figure
Role of solar flare index in long term modulation of cosmic ray intensity
Recently, the importance of the occurrence of solar flares in the long-term modulation of cosmic ray intensity has been re-emphasized. For this purpose, the data of solar flares have been used from various publications, such as Solar Geophysical Data books, U.A.G. reports and Quarterly Bulletin Of Solar Activity. Research very clearly reveals that even the periodic changes in the solar flare observations, obtained from the four different data sources, for the same interval, differ significantly from one another; this is evidenced even on an average basis. Hence, in any study using solar flares, the importance of selecting a single compilation of the solar-flare data for the entire period of investigation is stressed
- …