19 research outputs found
Mesoscopic spin confinement during acoustically induced transport
Long coherence lifetimes of electron spins transported using moving potential
dots are shown to result from the mesoscopic confinement of the spin vector.
The confinement dimensions required for spin control are governed by the
characteristic spin-orbit length of the electron spins, which must be larger
than the dimensions of the dot potential. We show that the coherence lifetime
of the electron spins is independent of the local carrier densities within each
potential dot and that the precession frequency, which is determined by the
Dresselhaus contribution to the spin-orbit coupling, can be modified by varying
the sample dimensions resulting in predictable changes in the spin-orbit length
and, consequently, in the spin coherence lifetime.Comment: 10 pages, 2 figure
Observation of second-harmonic generation induced by pure spin currents
Extensive efforts are currently being devoted to developing a new electronic
technology, called spintronics, where the spin of electrons is explored to
carry information. [1,2] Several techniques have been developed to generate
pure spin currents in many materials and structures. [3-10] However, there is
still no method available that can be used to directly detect pure spin
currents, which carry no net charge current and no net magnetization.
Currently, studies of pure spin currents rely on measuring the induced spin
accumulation with optical techniques [5, 11-13] or spin-valve configurations.
[14-17] However, the spin accumulation does not directly reflect the spatial
distribution or temporal dynamics of the pure spin current, and therefore
cannot monitor the pure spin current in a real-time and real-space fashion.
This imposes severe constraints on research in this field. Here we demonstrate
a second-order nonlinear optical effect of the pure spin current. We show that
such a nonlinear optical effect, which has never been explored before, can be
used for the non-invasive, non-destructive, and real-time imaging of pure spin
currents. Since this detection scheme does not rely on optical resonances, it
can be generally applied in a wide range of materials with different electronic
bandstructures. Furthermore, the control of nonlinear optical properties of
materials with pure spin currents may have potential applications in photonics
integrated with spintronics.Comment: 19 pages, 3 figures, supplementary discussion adde
Avalanche amplification of a single exciton in a semiconductor nanowire
Interfacing single photons and electrons is a crucial ingredient for sharing
quantum information between remote solid-state qubits. Semiconductor nanowires
offer the unique possibility to combine optical quantum dots with avalanche
photodiodes, thus enabling the conversion of an incoming single photon into a
macroscopic current for efficient electrical detection. Currently, millions of
excitation events are required to perform electrical read-out of an exciton
qubit state. Here we demonstrate multiplication of carriers from only a single
exciton generated in a quantum dot after tunneling into a nanowire avalanche
photodiode. Due to the large amplification of both electrons and holes (>
10^4), we reduce by four orders of magnitude the number of excitation events
required to electrically detect a single exciton generated in a quantum dot.
This work represents a significant step towards single-shot electrical read-out
and offers a new functionality for on-chip quantum information circuits
Electrons surfing on a sound wave as a platform for quantum optics with flying electrons
Electrons in a metal are indistinguishable particles that strongly interact
with other electrons and their environment. Isolating and detecting a single
flying electron after propagation to perform quantum optics like experiments at
the single electron level is therefore a challenging task. Up to date, only few
experiments have been performed in a high mobility two-dimensional electron gas
where the electron propagates almost ballistically. Flying electrons were
detected via the current generated by an ensemble of electrons and electron
correlations were encrypted in the current noise. Here we demonstrate the
experimental realisation of high efficiency single electron source and single
electron detector for a quantum medium where a single electron is propagating
isolated from the other electrons through a one-dimensional channel. The moving
potential is excited by a surface acoustic wave, which carries the single
electron along the 1D-channel at a speed of 3\mum/ns. When such a quantum
channel is placed between two quantum dots, a single electron can be
transported from one quantum dot to the other, which is several micrometres
apart, with a quantum efficiency of emission and detection of 96% and 92%,
respectively. Furthermore, the transfer of the electron can be triggered on a
timescale shorter than the coherence time T2* of GaAs spin qubits6. Our work
opens new avenues to study the teleportation of a single electron spin and the
distant interaction between spatially separated qubits in a condensed matter
system.Comment: Total 25 pages. 12 pages main text, 4 figures, 5 pages supplementary
materia
Fourier synthesis of radio frequency nanomechanical pulses with different shapes
The concept of Fourier synthesis is heavily employed in both consumer
electronic products and fundamental research. In the latter, pulse shaping is
key to dynamically initialize, probe and manipulate the state of classical or
quantum systems. In nuclear magnetic resonance, for instance, shaped pulses
have a long-standing tradition and the underlying fundamental concepts have
subsequently been successfully extended to optical frequencies and even to
implement quantum gate operations. Transferring these paradigms to
nanomechanical systems requires tailored nanomechanical waveforms. Here, we
report on an additive Fourier synthesizer for nanomechanical waveforms based on
monochromatic surface acoustic waves. As a proof of concept, we electrically
synthesize four different elementary nanomechanical waveforms from a
fundamental surface acoustic wave at MHz using a superposition
of up to three discrete harmonics . We employ these shaped pulses to
interact with an individual sensor quantum dot and detect their deliberately
and temporally modulated strain component via the opto-mechanical quantum dot
response. Importantly, and in contrast to the direct mechanical actuation by
bulk piezoactuators, surface acoustic waves provide much higher frequencies (>
20 GHz) to resonantly drive mechanical motion. Thus, our technique uniquely
allows coherent mechanical control of localized vibronic modes of
optomechanical crystals, even in the quantum limit when cooled to the
vibrational ground state.Comment: 18 pages - final manuscript and supporting materia
Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial
Background: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. Methods: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. Findings: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96–1·28). Interpretation: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. Funding: National Institute for Health Research Health Services and Delivery Research Programme
Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial
BACKGROUND: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. METHODS: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. FINDINGS: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96-1·28). INTERPRETATION: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. FUNDING: National Institute for Health Research Health Services and Delivery Research Programme