203 research outputs found

    Air-snow exchange investigations at Summit, Greenland: An overview

    Get PDF
    The Greenland Ice Sheet Project 2 (GISP2) and Greenland Ice Core Project (GRIP) deep drilling programs at Summit, Greenland included support (both logistical and scientific) of extensive investigation of atmospheric transport and air-snow exchange processes of gases and particles relevant to the interpretation of the ice-core records. Much of the sampling for the air-snow exchange investigations was conducted at a unique solar-powered camp 30 km southwest of the GISP2 drill camp (even further from the GRIP camp) and was characterized by a high degree of international collaboration and cooperation. The wide range of expertise and analytical capabilities of the 20-plus investigators participating in these studies has provided important insight into the meteorological, physical, and chemical processes which interact to determine the composition of snow and firn at Summit. Evolving understanding of this system will allow improved reconstruction of the composition of the atmosphere over Greenland in the past from the detailed Summit ice-core records. This paper provides an overview of air-snow exchange investigations at Summit, including their development through the course of the drilling programs (1989–1993), significant findings related to both air-snow exchange issues and the present state of the Arctic free troposphere, as well as the major outstanding questions which are being addressed in ongoing experiments at Summit

    Sulfate and MSA in the air and snow on the Greenland Ice Sheet

    Get PDF
    Sulfate and methanesulfonic acid (MSA) concentrations in aerosol, surface snow, and snowpit samples have been measured at two sites on the Greenland Ice Sheet. Seasonal variations of the concentrations observed for these chemical species in the atmosphere are reproduced in the surface snow and preserved in the snowpit sequence. The amplitude of the variations over a year are smaller in the snow than in the air, but the ratios of the concentrations are comparable. The seasonal variations for sulfate are different at the altitude of the Ice Sheet compared to those observed at sea level, with low concentrations in winter and short episodes of elevated concentrations in spring. In contrast, the variations in concentrations of MSA are similar to those measured at sea level, with a first sequence of elevated concentrations in spring and another one during summer, and a winter low resulting from low biogenic production. The ratio MSA/sulfate clearly indicates the influence of high-latitude sources for the summer maximum of MSA, but the large impact of anthropogenic sulfate precludes any conclusion for the spring maximum. The seasonal pattern observed for these species in a snowpit sampled according to stratigraphy indicates a deficit in the accumulation of winter snow at the summit of the Greenland Ice Sheet, in agreement with some direct observations. A deeper snowpit covering the years 1985–1992 indicates the consistency of the seasonal pattern for MSA over the years, which may be linked to transport and deposition processes

    Temporal and spatial variability of snow accumulation in central Greenland

    Get PDF
    Snow accumulation records from central Greenland are explored to improve the understanding of the accumulation signal in Greenland ice core records. Results from a “forest” of 100 bamboo poles and automated accumulation monitors in the vicinity of Summit as well as shallow cores collected in the Summit and Crete areas are presented. Based on these accumulation data, a regression has been calculated to quantify the signal-to-noise variance ratio of ice core accumulation signals on a variety of temporal (1 week to 2 years) and spatial (20 m to 200 km) scales. Results are consistent with data obtained from year-round automated accumulation measurements deployed at Summit which suggest that it is impossible to obtain regional snow accumulation data with seasonal resolution using four accumulation monitors positioned over a length scale of ∌30 km. Given this understanding of the temporal and spatial dependence of noise in the ice core accumulation signal, the accumulation records from 17 shallow cores are revisited. Each core spans the time period from 1964 to 1983. By combining the accumulation records, the regional snow accumulation record has been obtained for this period. The results show that 9 of the 20 years can be identified as having an accumulation different from the 20 year mean with 99% confidence. The signal-to-noise variance ratio for the average accumulation signal sampled at annual intervals is 5.8±0.5. The averaged accumulation time series may be useful to climate modelers attempting to validate their models with accurate regional hydrologic data sets

    Size distribution of EC and OC in the aerosol of Alpine valleys during summer and winter

    No full text
    International audienceCollections of samples were conducted for the determination of the size distributions of EC and OC during the intensive sampling campaigns of the POVA program, in two Alpine valleys of the French Alps, in summer and in winter. The comparison of concentrations obtained for samples collected in parallel with impactor- and filter-based methods indicates that the correction of pyrolysis seems to work for the impactor samples despite non even deposits. The size distributions of the concentrations of EC and OC present large evolutions between winter and summer, and between a suburban and a rural site. In winter, an overwhelming proportion of the mass fraction of both species is found in the droplet and accumulation modes, often (but not always) in association with sulfate and other chemical species resulting from secondary formation processes. Some indications of gas/particles exchanges can be found for the other parts of the size spectrum (the Aitken and super micron modes) in the case of the rural site. In summer, the changes are more drastic with, according to the case, a dominant droplet or accumulation mode. Particularly at the rural site, the large extent of processing of the aerosol due to gas/particles exchanges is evident for the Aitken and super micron modes, with increasing of the OC mass fractions in these size ranges. All of these observations give indications on the degree of internal vs. external mixing of the species investigated in the different modes

    Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments

    Get PDF
    Major contributors to the organic aerosol include water-soluble macromolecular compounds (e.g. HULIS<sub>WS</sub>: Water Soluble Humic LIke Substances). The nature and sources of HULIS<sub>WS</sub> are still largely unknown. This work is based on a monitoring in six different French cities performed during summer and winter seasons. HULIS<sub>WS</sub> analysis was performed with a selective method of extraction complemented by carbon quantification. UV spectroscopy was also applied for their chemical characterisation. HULIS<sub>WS</sub> carbon represent an important contribution to the organic aerosol mass in summer and winter, as it accounts for 12–22% of Organic Carbon and 34–40% of Water Soluble Organic Carbon. We found strong differences in the optical properties (specific absorbance at 250, 272, 280 nm and E2/E3 ratio) and therefore in the chemical structure between HULIS<sub>WS</sub> from samples of summer- and wintertime. These differences highlight different processes responsible for emissions and formation of HULIS<sub>WS</sub> according to the season, namely biomass burning in winter, and secondary processes in summer. Specific absorbance can also be considered as a rapid and useful indicator of the origin of HULIS<sub>WS</sub> in urban environment

    Size distribution of EC and OC in the aerosol of Alpine valleys during summer and winter

    Get PDF
    Collections of samples were conducted for the determination of the size distributions of EC and OC during the intensive sampling campaigns of the POVA program, in two Alpine valleys of the French Alps, in summer and in winter. The comparison of concentrations obtained for samples collected in parallel with impactor- and filter-based methods is rather positive with slopes of 0.95 and 0.76 for OC and EC, respectively and correlations close to 1 (0.92 and 0.90 for OC and EC, respectively, n=26). This is an indication that the correction of pyrolysis seems to work for the impactor samples despite non even deposits. The size distributions of the concentrations of EC and OC present large evolutions between winter and summer, and between a suburban and a rural site. In winter, an overwhelming proportion of the mass fraction of both species is found in the droplet and accumulation modes, often (but not always) in association with sulfate and other chemical species resulting from secondary formation processes. Some indications of gas/particles exchanges can be found for the other parts of the size spectrum (the Aitken and super micron modes) in the case of the rural site. In summer, the changes are more drastic with, according to the case, a dominant droplet or accumulation mode. Particularly at the rural site, the large extent of processing of the aerosol due to gas/particles exchanges is evident for the Aitken and super micron modes, with increasing of the OC mass fractions in these size ranges. All of these observations give indications on the degree of internal vs. external mixing of the species investigated in the different modes

    A simple model to estimate atmospheric concentrations of aerosol chemical species based on snow core chemistry at Summit, Greenland

    Get PDF
    A simple model is presented to estimate atmospheric concentrations of chemical species that exist primarily as aerosols based on snow core/ice core chemistry at Summit, Greenland. The model considers the processes of snow, fog, and dry deposition. The deposition parameters for each of the processes are estimated for SO42− and Ca2+ and are based on experiments conducted during the 1993 and 1994 summer field seasons. The seasonal mean atmospheric concentrations are estimated based on the deposition parameters and snow cores obtained during the field seasons. The ratios of the estimated seasonal mean airborne concentration divided by the measured mean concentration ( ) for SO42− over the 1993 and 1994 field seasons are 0.85 and 0.95, respectively. The ratios for Ca2+ are 0.45 and 0.90 for the 1993 and 1994 field seasons. The uncertainties in the estimated atmospheric concentrations range from 30% to 40% and are due to variability in the input parameters. The model estimates the seasonal mean atmospheric SO42− and Ca2+ concentrations to within 15% and 55%, respectively. Although the model is not directly applied to ice cores, the application of the model to ice core chemical signals is briefly discussed

    Modeling of the processing and removal of trace gas and aerosol species by Arctic radiation fogs and comparison with measurements

    Get PDF
    A Lagrangian radiation fog model is applied to a fog event at Summit, Greenland. The model simulates the formation and dissipation of fog. Included in the model are detailed gas and aqueous phase chemistry, and deposition of chemical species with fog droplets. Model predictions of the gas phase concentrations of H2O2, HCOOH, SO2, and HNO3 as well as the fog fluxes of S(VI), N(V), H2O2, and water are compared with measurements. The predicted fluxes of S(VI), N(V), H2O2, and fog water generally agree with measured values. Model results show that heterogeneous SO2 oxidation contributes to approximately 40% of the flux of S(VI) for the modeled fog event, with the other 60% coming from preexisting sulfate aerosol. The deposition of N(V) with fog includes contributions from HNO3 and NO2 initially present in the air mass. HNO3 directly partitions into the aqueous phase to create N(V), and NO2 forms N(V) through reaction with OH and the nighttime chemistry set of reactions which involves N2O5 and water vapor. PAN contributes to N(V) by gas phase decomposition to NO2, and also by direct aqueous phase decomposition. The quantitative contributions from each path are uncertain since direct measurements of PAN and NO2 are not available for the fog event. The relative contributions are discussed based on realistic ranges of atmospheric concentrations. Model results suggest that in addition to the aqueous phase partitioning of the initial HNO3 present in the air mass, the gas phase decomposition of PAN and subsequent reactions of NO2 with OH as well as nighttime nitrate chemistry may play significant roles in depositing N(V) with fog. If a quasi-liquid layer exists on snow crystals, it is possible that the reactions taking place in fog droplets also occur to some extent in clouds as well as at the snow surface

    Polycyclic aromatic hydrocarbons (PAHs) in the atmospheres of two French alpine valleys: sources and temporal patterns

    Get PDF
    International audienceAlpine valleys represent some of the most important crossroads for international heavy-duty traffic in Europe, but the full impact of this traffic on air quality is not known due to a lack of data concerning these complex systems. As part of the program "Pollution des Vallées Alpines" (POVA), we performed two sampling surveys of polycyclic aromatic hydrocarbons (PAHs) in two sensitive valleys: the Chamonix and Maurienne Valleys, between France and Italy. Sampling campaigns were performed during the summer of 2000 and the winter of 2001, with both periods taking place during the closure of the "Tunnel du Mont-Blanc". The first objective of this paper is to describe the relations between PAH concentrations, external parameters (sampling site localization, meteorological parameters, sources), and aerosol characteristics, including its carbonaceous fraction (OC and EC). The second objective is to study the capacity of PAH profiles to accurately distinguish the different emission sources. Temporal evolution of the relative concentration of an individual PAH (CHR) and the PAH groups BghiP+COR and BbF+BkF is studied in order to differentiate wood combustion, gasoline, and diesel emissions, respectively. The results show that the total particulate PAH concentrations were higher in the Chamonix valley during both seasons, despite the cessation of international traffic. Seasonal cycles, with higher concentrations in winter, are also stronger in this valley. During winter, particulate PAH concentration can reach very high levels (up to 155 ng.m-3) in this valley during cold anticyclonic periods. The examination of sources shows the impact during summer of heavy-duty traffic in the Maurienne valley and of gasoline vehicles in the Chamonix valley. During winter, Chamonix is characterized by the strong influence of wood combustion in residential fireplaces, even if the temporal evolution of specific PAH ratios are difficult to interpret. Information on sources given by PAH profiles can only be considered in qualitative terms
    • 

    corecore