662 research outputs found
Bose-Einstein condensates with attractive interactions on a ring
Considering an effectively attractive quasi-one-dimensional Bose-Einstein
condensate of atoms confined in a toroidal trap, we find that the system
undergoes a phase transition from a uniform to a localized state, as the
magnitude of the coupling constant increases. Both the mean-field
approximation, as well as a diagonalization scheme are used to attack the
problem.Comment: 4 pages, 4 ps figures, RevTex, typographic errors correcte
Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole
Firstly we derive peculiar spherical Weyl solutions, using a general
spherically symmetric metric due to a massive charged object with definite mass
and radius. Afterwards, we present new analytical solutions for relevant
cosmological terms, which appear in the metrics. Connecting the metrics to a
new geometric definition of a charged Black Hole, we numerically investigate
the effective potentials of the total dynamical system, considering massive and
massless test particles, moving on such Black Holes.Comment: 8 pages, 5 figure
On the dispersion of fundamental particles in QCD and N=4 Super Yang-Mills theory
We study thermal corrections to the dispersion relations of massive
fundamental particles immersed in weakly coupled non-Abelian plasmas. The cases
covered include quarks in the QCD (quark-gluon) plasma, as well as N=2 quarks
and scalars in an N=4 Super Yang-Mills plasma. We perform the calculations to
leading order in a weak coupling expansion, and consider all mass scales of the
fundamental fields, ranging from massless particles all the way to bare masses
parametrically larger than the temperature.Comment: 41 pages, 8 figures; v2 to be published in JHEP, with one table added
to summarize result
Neutron matter with a model interaction
An infinite system of neutrons interacting by a model pair potential is
considered. We investigate a case when this potential is sufficiently strong
attractive, so that its scattering length tends to infinity. It appeared, that
if the structure of the potential is simple enough, including no finite
parameters, reliable evidences can be presented that such a system is
completely unstable at any finite density. The incompressibility as a function
of the density is negative, reaching zero value when the density tends to zero.
If the potential contains a sufficiently strong repulsive core then the system
possesses an equilibrium density. The main features of a theory describing such
systems are considered.Comment: 8 pages, LaTeX. In press, Eur. Phys. J.
Electrodynamics with radiation reaction
The self force of electrodynamics is derived from a scalar field. The
resulting equation of motion is free of all of the problems that plague the
Lorentz Abraham Dirac equation. The age-old problem of a particle in a constant
field is solved and the solution has intuitive appeal.Comment: 5 page
The phase free, longitudinal, magnetic component of vacuum electromagnetism
A charge moving in a reference laboratory system with constant velocity
{\bf V} in the -axis produces in the -axis a longitudinal, phase free,
vacuum magnetic field which is identified as the radiated field
of Evans, Vigier and others.Comment: ReVTeX file, 7pp., no figure
Bremsstrahlung radiation by a tunneling particle
We study the bremsstrahlung radiation of a tunneling charged particle in a
time-dependent picture. In particular, we treat the case of bremsstrahlung
during alpha-decay, which has been suggested as a promissing tool to
investigate the problem of tunneling times. We show deviations of the numerical
results from the semiclassical estimates. A standard assumption of a preformed
particle inside the well leads to sharp high-frequency lines in the
bremsstrahlung emission. These lines correspond to "quantum beats" of the
internal part of the wavefunction during tunneling arising from the
interference of the neighboring resonances in the well.Comment: 4 pages, 4 figure
Metafluid dynamics and Hamilton-Jacobi formalism
Metafluid dynamics was investigated within Hamilton-Jacobi formalism and the
existence of the hidden gauge symmetry was analyzed. The obtained results are
in agreement with those of Faddeev-Jackiw approach.Comment: 7 page
Vortex Rings in two Component Bose-Einstein Condensates
We study the structure of the vortex core in two-component Bose-Einstein
condensates. We demonstrate that the order parameter may not vanish and the
symmetry may not be restored in the core of the vortex. In this case such
vortices can form vortex rings known as vortons in particle physics literature.
In contrast with well-studied superfluid , where similar vortex rings can
be stable due to Magnus force only if they move, the vortex rings in
two-component BECs can be stable even if they are at rest. This beautiful
effect was first discussed by Witten in the cosmic string context, where it was
shown that the stabilization occurs due to condensation of the second component
of the field in the vortex core. This second condensate trapped in the core may
carry a current along the vortex ring counteracting the effect of string
tension that causes the loop to shrink. We speculate that such vortons may have
been already observed in the laboratory. We also speculate that the
experimental study of topological structures in BECs can provide a unique
opportunity to study cosmology and astrophysics by doing laboratory
experiments.Comment: 21 pages, 2 figure
- …