12 research outputs found

    What parameters affect left ventricular diastolic flow propagation velocity? in vitro studies using color m-mode doppler echocardiography

    Get PDF
    BACKGROUND: Insufficient data describe the relationship of hemodynamic parameters to left ventricular (LV) diastolic flow propagation velocity (Vp) measured using color M-mode Doppler echocardiography. METHODS: An in vitro LV model used to simulate LV diastolic inflow with Vp measured under conditions of varying: 1) Stroke volume, 2) heart rate (HR), 3) LV volume, 4) LV compliance, and 5) transmitral flow (TMF) waveforms (Type 1: constant low diastasis flow and Type 2: no diastasis flow). RESULTS: Univariate analysis revealed excellent correlations of Vp with stroke volume (r = 0.98), LV compliance (r = 0.94), and HR with Type 1 TMF (r = 0.97). However, with Type 2 TMF, HR was not associated with Vp. LV volume was not related to Vp under low compliance, but inversely related to Vp under high compliance conditions (r = -0.56). CONCLUSION: These in vitro findings may help elucidate the relationship of hemodynamic parameters to early diastolic LV filling

    Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation

    Get PDF
    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results

    Flow propagation velocity is not a simple index of diastolic function in early filling. A comparative study of early diastolic strain rate and strain rate propagation, flow and flow propagation in normal and reduced diastolic function

    Get PDF
    BACKGROUND: Strain Rate Imaging shows the filling phases of the left ventricle to consist of a wave of myocardial stretching, propagating from base to apex. The propagation velocity of the strain rate wave is reduced in delayed relaxation. This study examined the relation between the propagation velocity of strain rate in the myocardium and the propagation velocity of flow during early filling. METHODS: 12 normal subjects and 13 patients with treated hypertension and normal systolic function were studied. Patients and controls differed significantly in diastolic early mitral flow measurements, peak early diastolic tissue velocity and peak early diastolic strain rate, showing delayed relaxation in the patient group. There were no significant differences in EF or diastolic diameter. RESULTS: Strain rate propagation velocity was reduced in the patient group while flow propagation velocity was increased. There was a negative correlation (R = -0.57) between strain rate propagation and deceleration time of the mitral flow E-wave (R = -0.51) and between strain rate propagation and flow propagation velocity and there was a positive correlation (R = 0.67) between the ratio between peak mitral flow velocity / strain rate propagation velocity and flow propagation velocity. CONCLUSION: The present study shows strain rate propagation to be a measure of filling time, but flow propagation to be a function of both flow velocity and strain rate propagation. Thus flow propagation is not a simple index of diastolic function in delayed relaxation

    The vortex\u2014an early predictor of cardiovascular outcome?

    No full text
    Blood motion in the heart features vortices that accompany the redirection of jet flows towards the outlet tracks. Vortices have a crucial role in fluid dynamics. The stability of cardiac vorticity is vital to the dynamic balance between rotating blood and myocardial tissue and to the development of cardiac dysfunction. Moreover, vortex dynamics immediately reflect physiological changes to the surrounding system, and can provide early indications of long-term outcome. However, the pathophysiological relevance of cardiac fluid dynamics is still unknown. We postulate that maladaptive intracardiac vortex dynamics might modulate the progressive remodelling of the left ventricle towards heart failure. The evaluation of blood flow presents a new paradigm in cardiac function analysis, with the potential for sensitive risk identification of cardiac abnormalities. Description of cardiac flow patterns after surgery or device therapy provides an intrinsic qualitative evaluation of therapeutic procedures, and could enable early risk stratification of patients vulnerable to adverse cardiac remodelling
    corecore