23 research outputs found

    Pramipexole effects on startle gating in rats and normal men

    Get PDF
    Dopamine D3 receptors regulate sensorimotor gating in rats, as evidenced by changes in prepulse inhibition (PPI) of startle after acute administration of D3 agonists and antagonists. In this study, we tested the effects of the D3-preferential agonist, pramipexole, on PPI in normal men and Sprague–Dawley rats. Acoustic startle and PPI were tested in clinically normal men, comparing the effects of placebo vs. 0.125 mg (n = 20) or placebo vs. 0.1875 mg (n = 20) pramipexole, in double blind, crossover designs. These measures were also tested in male Sprague–Dawley rats using a parallel design [vehicle vs. 0.1 mg/kg (n = 8), vehicle vs. 0.3 mg/kg (n = 8) or vehicle vs. 1.0 mg/kg pramipexole (n = 8)]. Autonomic and subjective measures of pramipexole effects and several personality instruments were also measured in humans. Pramipexole increased drowsiness and significantly increased PPI at 120-ms intervals in humans; the latter effect was not moderated by baseline PPI or personality scale scores. In rats, pramipexole causes a dose-dependent reduction in long-interval (120 ms) PPI, while low doses actually increased short-interval (10–20 ms) PPI. Effects of pramipexole on PPI in rats were independent of baseline PPI and changes in startle magnitude. The preferential D3 agonist pramipexole modifies PPI in humans and rats. Unlike indirect DA agonists and mixed D2/D3 agonists, pramipexole increases long-interval PPI in humans, in a manner that is independent of baseline PPI and personality measures. These findings are consistent with preclinical evidence for differences in the D2- and D3-mediated regulation of sensorimotor gating

    Effect of apomorphine on cognitive performance and sensorimotor gating in humans

    Get PDF
    Contains fulltext : 88792.pdf (publisher's version ) (Closed access)INTRODUCTION: Dysfunction of brain dopamine systems is involved in various neuropsychiatric disorders. Challenge studies with dopamine receptor agonists have been performed to assess dopamine receptor functioning, classically using the release of growth hormone (GH) from the hindbrain as primary outcome measure. The objective of the current study was to assess dopamine receptor functioning at the forebrain level. METHODS: Fifteen healthy male volunteers received apomorphine sublingually (2 mg), subcutaneously (0.005 mg/kg), and placebo in a balanced, double-blind, cross-over design. Outcome measures were plasma GH levels, performance on an AX continuous performance test, and prepulse inhibition of the acoustic startle. The relation between central outcome measures and apomorphine levels observed in plasma and calculated in the brain was modeled using a two-compartmental pharmacokinetic-pharmacodynamic analysis. RESULTS: After administration of apomorphine, plasma GH increased and performance on the AX continuous performance test deteriorated, particularly in participants with low baseline performance. Apomorphine disrupted prepulse inhibition (PPI) on high-intensity (85 dB) prepulse trials and improved PPI on low intensity (75 dB) prepulse trials, particularly in participants with low baseline PPI. High cognitive performance at baseline was associated with reduced baseline sensorimotor gating. Neurophysiological measures correlated best with calculated brain apomorphine levels after subcutaneous administration. CONCLUSION: The apomorphine challenge test appears a useful tool to assess dopamine receptor functioning at the forebrain level. Modulation of the effect of apomorphine by baseline performance levels may be explained by an inverted U-shape relation between prefrontal dopamine functioning and cognitive performance, and mesolimbic dopamine functioning and sensorimotor gating. Future apomorphine challenge tests preferentially use multiple outcome measures, after subcutaneous administration of apomorphine.1 januari 201

    Dexamphetamine effects on prepulse inhibition (PPI) and startle in healthy volunteers

    No full text
    Rationale: Amphetamine challenge in rodent prepulse inhibition (PPI) studies has been used to model potential dopamine involvement in effects that may be relevant to schizophrenia, though similar studies in healthy humans have failed to report replicable or robust effects. Objectives: The present study investigated dexamphetamine effects on PPI in healthy humans with an increased dose and a range of startling stimulus intensities to determine participants' sensitivity and range of responses to the stimuli. Methods: A randomised, placebo-controlled dexamphetamine (0.45 mg/kg, per os.), double-blind, counterbalanced, within-subject design was used. PPI was measured in 64 participants across a range of startling stimulus intensities, during two attention set conditions (ATTEND and IGNORE). Startle magnitudes for pulse-alone and prepulse-pulse magnitudes were modelled using the startle reflex magnitude (sigmoid) function. Parameters were extracted from these fits, including the upper limit of the asymptote (maximum startle reflex capacity, R MAX), intensity threshold, stimulus intensity that elicits a half-maximal response (ES50) and the maximum rate of change of startle response magnitude to an increase in stimulus intensity. Results: Dexamphetamine increased the threshold and ES50 of the response to pulse-alone trials in both sexes and reduced R MAX exclusively in females. Dexamphetamine modestly increased PPI of the R MAX across both attention conditions. PPI of R MAX was reduced during the ATTEND condition compared to the IGNORE condition. Conclusions: Results indicate that sex differences exist in motor, but not sensory, components of the startle reflex. Findings also reveal that administration of 0.45 mg/kg dexamphetamine to healthy humans does not mimic PPI effects observed in schizophrenia
    corecore