8 research outputs found

    Incretins and microvascular complications of diabetes: neuropathy, nephropathy, retinopathy and microangiopathy

    No full text
    Glucagon-like peptide-1 receptor agonists (GLP-1RAs, incretin mimetics) and dipeptidyl peptidase-4 inhibitors (DPP-4is, incretin enhancers) are glucose-lowering therapies with proven cardiovascular safety, but their effect on microvascular disease is not fully understood. Both therapies increase GLP-1 receptor agonism, which is associated with attenuation of numerous pathological processes that may lead to microvascular benefits, including decreased reactive oxygen species (ROS) production, decreased inflammation and improved vascular function. DPP-4is also increase stromal cell-derived factor-1 (SDF-1), which is associated with neovascularisation and tissue repair. Rodent studies demonstrate several benefits of these agents in the prevention or reversal of nephropathy, retinopathy and neuropathy, but evidence from human populations is less clear. For nephropathy risk in human clinical trials, meta-analyses demonstrate that GLP-1RAs reduce the risk of a composite renal outcome (doubling of serum creatinine, eGFR reduction of 30%, end-stage renal disease or renal death), whereas the benefits of DPP-4is appear to be limited to reductions in the risk of albuminuria. The relationship between GLP-1RAs and retinopathy is less clear. Many large trials and meta-analyses show no effect, but an observed increase in the risk of retinopathy complications with semaglutide therapy (a GLP-1RA) in the SUSTAIN-6 trial warrants caution, particularly in individuals with baseline retinopathy. Similarly, DPP-4is are associated with increased retinopathy risk in both trials and meta-analysis. The association between GLP-1RAs and peripheral neuropathy is unclear due to little trial evidence. For DPP-4is, one trial and several observational studies show a reduced risk of peripheral neuropathy, with others reporting no effect. Evidence in other less-established microvascular outcomes, such as microvascular angina, cerebral small vessel disease, skeletal muscle microvascular disease and autonomic neuropathies (e.g. cardiac autonomic neuropathy, gastroparesis, erectile dysfunction), is sparse. In conclusion, GLP-1RAs are protective against nephropathy, whereas DPP-4is are protective against albuminuria and potentially peripheral neuropathy. Caution is advised with DPP-4is and semaglutide, particularly for patients with background retinopathy, due to increased risk of retinopathy. Well-designed trials powered for microvascular outcomes are needed to clarify associations of incretin therapies and microvascular diseases. Graphical Abstract: [Figure not available: see fulltext.]

    Where does metformin stand in modern day management of type 2 diabetes?

    No full text
    Metformin is the most commonly used glucose-lowering therapy (GLT) worldwide and remains the first-line therapy for newly diagnosed individuals with type 2 diabetes (T2D) in management algorithms and guidelines after the UK Prospective Diabetes Study (UKPDS) showed cardiovascular mortality benefits in the overweight population using metformin. However, the improved Major Adverse Cardiovascular Events (MACE) realised in some of the recent large cardiovascular outcomes trials (CVOTs) using sodium-glucose co-transporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) have challenged metformin’s position as a first-line agent in the management of T2D. Many experts now advocate revising the existing treatment algorithms to target atherosclerotic cardiovascular disease (ASCVD) and improving glycaemic control as a secondary aim. In this review article, we will revisit the major cardiovascular outcome data for metformin and include a critique of the UKPDS data. We then review additional factors that might be pertinent to metformin’s status as a first-line agent and finally answer key questions when considering metformin’s role in the modern-day management of T2D

    Physical activity is inversely associated with hepatic fibro-inflammation: A population-based cohort study using UK Biobank data

    No full text
    Background & Aims: Physical activity (PA) is recommended in the management of non-alcoholic fatty liver disease (NAFLD) given its beneficial effects on liver fat and cardiometabolic risk. Using data from the UK Biobank population-cohort, this study examined associations between habitual PA and hepatic fibro-inflammation. Methods: A total of 840 men and women aged 55-70 years were included in this cross-sectional study. Hepatic fibro-inflammation (iron-corrected T1 [cT1]) and liver fat were measured using MRI, whilst body fat was measured using dual-energy X-ray absorptiometry. PA was measured using accelerometry. Generalised linear models examined associations between PA (light [LPA], moderate [MPA], vigorous [VPA], moderate-to-vigorous [MVPA] and mean acceleration) and hepatic cT1. Models were fitted for the whole sample and separately for upper and lower median groups for body and liver fat. Models were adjusted for sociodemographic and lifestyle variables. Results: In the full sample, LPA (-0.08 ms [-0.12 to -0.03]), MPA, (-0.13 ms [-0.21 to -0.05]), VPA (-1.16 ms [-1.81 to -0.51]), MVPA (-0.14 ms [-0.21 to -0.06]) and mean acceleration (-0.67 ms [-1.05 to-0.28]) were inversely associated with hepatic cT1. With the sample split by median liver or body fat, only VPA was inversely associated with hepatic cT1 in the upper median groups for body (-2.68 ms [-4.24 to -1.13]) and liver fat (-2.33 [-3.73 to -0.93]). PA was unrelated to hepatic cT1 in the lower median groups. Conclusions: Within a population-based cohort, device-measured PA is inversely associated with hepatic fibro-inflammation. This relationship is strongest with VPA and is greater in people with higher levels of body and liver fat.  Lay summary: This study has shown that people who regularly perform greater amounts of physical activity have a reduced level of inflammation and fibrosis in their liver. This beneficial relationship is particularly strong when more intense physical activity is undertaken (i.e., vigorous-intensity), and is most visible in individuals with higher levels of liver fat and body fat.</p

    The effects of weight-lowering pharmacotherapies on physical activity, function and fitness: A systematic review and meta-analysis of randomized controlled trials

    No full text
    Weight-lowering pharmacotherapies provide an option for weight management; however, their effects on physical activity, function, and cardiorespiratory fitness are not fully understood. We conducted a systematic review and meta-analysis of randomized controlled trials to investigate the effect of licensed weight loss pharmacotherapies on physical activity, physical function, and cardiorespiratory fitness in individuals with obesity. Fourteen trials met our prespecified inclusion criteria: Five investigated liraglutide, four semaglutide, three naltrexone/bupropion, and two phentermine/topiramate. All 14 trials included a self-reported measure of physical function, with the pooled findings suggesting an improvement favoring the pharmacotherapy intervention groups (SMD: 0.27; 95% CI: 0.22 to 0.32) and effects generally consistent across different therapies. Results were also consistent when stratified by the two most commonly used measures: The Short-Form 36-Item Questionnaire (SF-36) (0.24; 0.17 to 0.32) and the Impact of Weight on Quality Of Life-Lite (IWQOL-Lite) (0.29; 0.23 to 0.35). Meta-regression confirmed a significant association between pharmacotherapy induced weight loss and improved physical function for IWQOL-Lite (p = 0.003). None of the studies reported a physical activity outcome, and only one study reported objectively measured cardiorespiratory fitness. Improvements in self-reported physical function were observed with weight loss therapy, but the effect on physical activity or objectively measured physical function and fitness could not be determined

    Moderate-intensity stepping in older adults: insights from treadmill walking and daily living

    No full text
    Background: A step cadence of 100 steps/minute is widely used to define moderate-intensity walking. However, the generalizability of this threshold to different populations needs further research. We investigate moderate-intensity step cadence values during treadmill walking and daily living in older adults. Methods: Older adults (≥ 60 years) were recruited from urban community venues. Data collection included 7 days of physical activity measured by an activPAL3™ thigh worn device, followed by a laboratory visit involving a 60-min assessment of resting metabolic rate, then a treadmill assessment with expired gas measured using a breath-by-breath analyser and steps measured by an activPAL3™. Treadmill stages were undertaken in a random order and lasted 5 min each at speeds of 1, 2, 3, 4 and 5 km/h. Metabolic equivalent values were determined for each stage as standardised values (METSstandard) and as multiples of resting metabolic rate (METSrelative). A value of 3 METSstandard defined moderate-intensity stepping. Segmented generalised estimating equations modelled the association between step cadence and MET values. Results: The study included 53 participants (median age = 75, years, BMI = 28.0 kg/m2, 45.3% women). At 2 km/h, the median METSstandard and METSrelative values were above 3 with a median cadence of 81.00 (IQR 72.00, 88.67) steps/minute. The predicted cadence at 3 METSstandard was 70.3 (95% CI 61.4, 75.8) steps/minute. During free-living, participants undertook median (IQR) of 6988 (5933, 9211) steps/day, of which 2554 (1297, 4456) steps/day were undertaken in continuous stepping bouts lasting ≥ 1 min. For bouted daily steps, 96.4% (90.7%, 98.9%) were undertaken at ≥ 70 steps/minute. Conclusion: A threshold as low as 70 steps/minute may be reflective of moderate-intensity stepping in older adults, with the vast majority of all bouted free-living stepping occurring above this threshold

    The effect of acute and chronic exercise on hepatic lipid composition

    Full text link
    Exercise is recommended for those with, or at risk of nonalcoholic fatty liver disease (NAFLD), owing to beneficial effects on hepatic steatosis and cardiometabolic risk. Whilst exercise training reduces total intrahepatic lipid in people with NAFLD, accumulating evidence indicates that exercise may also modulate hepatic lipid composition. This metabolic influence is important as the profile of saturated (SFA), monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) dramatically affect the metabolic consequences of hepatic lipid accumulation; with SFA being especially lipotoxic. Relatedly, obesity and NAFLD are associated with hepatic PUFA depletion and elevated SFA. This review summarizes the acute (single bout) and chronic (exercise training) effects of exercise on hepatic lipid composition in rodents (acute studies: n = 3, chronic studies: n = 13) and humans (acute studies: n = 1, chronic studies: n = 3). An increased proportion of hepatic PUFA after acute and chronic exercise is the most consistent finding of this review. Mechanistically, this may relate to an enhanced uptake of adipose-derived PUFA (reflecting habitual diet), particularly in rodents. A relative decrease in the proportion of hepatic MUFA after chronic exercise is also documented repeatedly, particularly in rodent models with elevated hepatic MUFA. This outcome is related to decreased hepatic stearoyl-CoA desaturase-1 activity in some studies. Findings regarding hepatic SFA are less consistent and limited by the absence of metabolic challenge in rodent models. These findings require confirmation in well-controlled interventions in people with NAFLD. These studies will be facilitated by recently validated magnetic resonance spectroscopy techniques, able to precisely quantify hepatic lipid composition in vivo.</p

    Device-measured physical activity and its association with physical function in adults with type 2 diabetes mellitus.

    Full text link
    AIM:To quantify how differences in metrics characterizing physical activity and sedentary behaviour in type 2 diabetes are associated with physical function METHODS: This analysis included participants' data from the Chronotype of Patients with Type 2 Diabetes and Effect on Glycaemic Control (CODEC) cross-sectional study. Data were stratified into two groups according to their short physical performance battery (SPPB) score (impaired physical function = SPPB < 10 and normal physical function = SPPB ≥ 10). Hand-grip strength, sit-to-stand 60 (STS-60) and the Duke Activity Status Index (DASI) score were used to assess functional capacity, while physical activity metrics were measured with a wrist-worn accelerometer. The associations between physical activity metrics and measures of functional capacity were analysed using generalized linear modelling. RESULTS:Some 635 adults (median age 66 years, 34% female) were included in this analysis. Overall, 29% of the cohort scored < 10 in the SPPB test indicating impaired physical function. This group spent more time in prolonged sedentary behaviour (600.7 vs. 572.5 min) and undertook less-intense physical activity. Each sd increase in physical activity volume and intensity gradients for those with impaired physical function was associated with 17% more repetitions for STS-60 with similar associations seen for DASI score. Each sd in sedentary time was associated with 15% fewer repetitions in STS-60 and 16% lower DASI score in those with impaired physical function, whereas in normal physical function group it was 2% and 1%, respectively. CONCLUSIONS:The strength of the associations for physical activity measures and functional capacity were modified by physical function status, with the strongest association seen in those with impaired physical function

    Age at Diagnosis of Type 2 Diabetes and Depressive Symptoms, Diabetes-Specific Distress, and Self-Compassion

    Full text link
    OBJECTIVE To investigate the association between age at diagnosis of type 2 diabetes and depressive symptoms, diabetes-specific distress, and self-compassion among adults with type 2 diabetes. RESEARCH DESIGN AND METHODS This analysis used data from the Chronotype of Patients with Type 2 Diabetes and Effect on Glycemic Control (CODEC) cross-sectional study. Information was collected on depressive symptoms, diabetes-specific distress, and self-compassion, measured using validated self-report questionnaires, in addition to sociodemographic and clinical data. Multivariable regression models, adjusted for diabetes duration, sex, ethnicity, deprivation status, prescription of antidepressants (selective serotonin reuptake inhibitors), and BMI were used to investigate the association between age at diagnosis of type 2 diabetes and each of the three psychological outcomes. RESULTS A total of 706 participants were included; 64 (9.1%) were diagnosed with type 2 diabetes at CONCLUSIONS Diagnosis of type 2 diabetes at a younger age is associated with lower psychological well-being, suggesting the need for clinical vigilance and the availability of age-appropriate psychosocial support.</p
    corecore