53 research outputs found

    Gene Expression Profiles of Sporadic Canine Hemangiosarcoma Are Uniquely Associated with Breed

    Get PDF
    The role an individual's genetic background plays on phenotype and biological behavior of sporadic tumors remains incompletely understood. We showed previously that lymphomas from Golden Retrievers harbor defined, recurrent chromosomal aberrations that occur less frequently in lymphomas from other dog breeds, suggesting spontaneous canine tumors provide suitable models to define how heritable traits influence cancer genotypes. Here, we report a complementary approach using gene expression profiling in a naturally occurring endothelial sarcoma of dogs (hemangiosarcoma). Naturally occurring hemangiosarcomas of Golden Retrievers clustered separately from those of non-Golden Retrievers, with contributions from transcription factors, survival factors, and from pro-inflammatory and angiogenic genes, and which were exclusively present in hemangiosarcoma and not in other tumors or normal cells (i.e., they were not due simply to variation in these genes among breeds). Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) was among genes preferentially enriched within known pathways derived from gene set enrichment analysis when characterizing tumors from Golden Retrievers versus other breeds. Heightened VEGFR1 expression in these tumors also was apparent at the protein level and targeted inhibition of VEGFR1 increased proliferation of hemangiosarcoma cells derived from tumors of Golden Retrievers, but not from other breeds. Our results suggest heritable factors mold gene expression phenotypes, and consequently biological behavior in sporadic, naturally occurring tumors

    Non-protein coding RNA biomarkers and differential expression in cancers: a review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In these years a huge number of human transcripts has been found that do not code for proteins, named non-protein coding RNAs. In most cases, small (miRNAs, snoRNAs) and long RNAs (antisense RNA, dsRNA, and long RNA species) have many roles, functioning as regulators of other mRNAs, at transcriptional and post-transcriptional level, and controlling protein ubiquitination and degradation. Various species of npcRNAs have been found differentially expressed in different types of cancer. This review discusses the published data and new results on the expression of a subset of npcRNAs.</p> <p>Conclusion</p> <p>These results underscore the complexity of the RNA world and provide further evidence on the involvement of functional RNAs in cancer cell growth control.</p

    A call to action for climate change research on Caribbean dry forests

    Get PDF
    The final publication is available at Springer via https://doi.org/10.1007/s10113-018-1334-6Tropical dry forest (TDF) is globally one of the most threatened forest types. In the insular Caribbean, limited land area and high population pressure have resulted in the loss of over 60% of TDF, yet local people’s reliance on these systems for ecosystem services is high. Given the sensitivity of TDF to shifts in precipitation regimes and the vulnerability of the Caribbean to climate change, this study examined what is currently known about the impacts of climate change on TDF in the region. A systematic review (n = 89) revealed that only two studies addressed the ecological response of TDF to climate change. Compared to the rapidly increasing knowledge of the effects of climate change on other Caribbean systems and on TDF in the wider neotropics, this paucity is alarming given the value of these forests. We stress the need for long-term monitoring of climate change responses of these critical ecosystems, including phenological and hotspot analyses as priorities

    Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits

    Get PDF
    Background Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation. Objective The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry. Results The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior. Conclusions Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression

    Kinase clamping

    No full text
    • …
    corecore