215 research outputs found

    Superpartner spectrum of minimal gaugino-gauge mediation

    Full text link
    We evaluate the sparticle mass spectrum in the minimal four-dimensional construction that interpolates between gaugino and ordinary gauge mediation at the weak scale. We find that even in the hybrid case -- when the messenger scale is comparable to the mass of the additional gauge particles -- both the right-handed as well as the left-handed sleptons are lighter than the bino in the low-scale mediation regime. This implies a chain of lepton production and, consequently, striking signatures that may be probed at the LHC already in the near future.Comment: 8 pages, 3 figures; V2: refs and a few comments added; V3 title change

    Adaptive Filtering Enhances Information Transmission in Visual Cortex

    Full text link
    Sensory neuroscience seeks to understand how the brain encodes natural environments. However, neural coding has largely been studied using simplified stimuli. In order to assess whether the brain's coding strategy depend on the stimulus ensemble, we apply a new information-theoretic method that allows unbiased calculation of neural filters (receptive fields) from responses to natural scenes or other complex signals with strong multipoint correlations. In the cat primary visual cortex we compare responses to natural inputs with those to noise inputs matched for luminance and contrast. We find that neural filters adaptively change with the input ensemble so as to increase the information carried by the neural response about the filtered stimulus. Adaptation affects the spatial frequency composition of the filter, enhancing sensitivity to under-represented frequencies in agreement with optimal encoding arguments. Adaptation occurs over 40 s to many minutes, longer than most previously reported forms of adaptation.Comment: 20 pages, 11 figures, includes supplementary informatio

    Revealing the footprints of squark gluino production through Higgs search experiments at the Large Hadron Collider at 7 TeV and 14 TeV

    Full text link
    The invariant mass distribution of the di-photons from the decay of the lighter scalar Higgs boson(h) to be carefully measured by dedicated h search experiments at the LHC may be distorted by the di-photons associated with the squark-gluino events with much larger cross sections in Gauge Mediated Supersymmetry Breaking (GMSB) models. This distortion if observed by the experiments at the Large Hadron Collider at 7 TeV or 14 TeV, would disfavour not only the standard model but various two Higgs doublet models with comparable h - masses and couplings but without a sector consisting of new heavy particles decaying into photons. The minimal GMSB (mGMSB) model constrained by the mass bound on h from LEP and that on the lightest neutralino from the Tevatron, produce negligible effects. But in the currently popular general GMSB(GGMSB) models the tail of the above distribution may show statistically significant excess of events even in the early stages of the LHC experiments with integrated luminosity insufficient for the discovery of h. We illustrate the above points by introducing several benchmark points in various GMSB models - minimal as well as non-minimal. The same conclusion follows from a detailed parameter scan in a simplified GGMSB model recently employed by the CMS collaboration to interpret their searches in the di-photon + \etslash channel. Other observables like the effective mass distribution of the di-photon + X events may also reveal the presence of new heavy particles beyond the Higgs sector. The contamination of the h mass peak and simple remedies are also discussed.Comment: 23 pages, 7 figures, title and organization of the paper is changed, detailed parameter scan in a simplified GGMSB model is added, conclusions and old numerical results remain unchange

    Lepton Acceleration in Pulsar Wind Nebulae

    Full text link
    Pulsar Wind Nebulae (PWNe) act as calorimeters for the relativistic pair winds emanating from within the pulsar light cylinder. Their radiative dissipation in various wavebands is significantly different from that of their pulsar central engines: the broadband spectra of PWNe possess characteristics distinct from those of pulsars, thereby demanding a site of lepton acceleration remote from the pulsar magnetosphere. A principal candidate for this locale is the pulsar wind termination shock, a putatively highly-oblique, ultra-relativistic MHD discontinuity. This paper summarizes key characteristics of relativistic shock acceleration germane to PWNe, using predominantly Monte Carlo simulation techniques that compare well with semi-analytic solutions of the diffusion-convection equation. The array of potential spectral indices for the pair distribution function is explored, defining how these depend critically on the parameters of the turbulent plasma in the shock environs. Injection efficiencies into the acceleration process are also addressed. Informative constraints on the frequency of particle scattering and the level of field turbulence are identified using the multiwavelength observations of selected PWNe. These suggest that the termination shock can be comfortably invoked as a principal injector of energetic leptons into PWNe without resorting to unrealistic properties for the shock layer turbulence or MHD structure.Comment: 19 pages, 5 figures, invited review to appear in Proc. of the inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space Science series

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Camouflaging in a Complex Environment—Octopuses Use Specific Features of Their Surroundings for Background Matching

    Get PDF
    Living under intense predation pressure, octopuses evolved an effective and impressive camouflaging ability that exploits features of their surroundings to enable them to “blend in.” To achieve such background matching, an animal may use general resemblance and reproduce characteristics of its entire surroundings, or it may imitate a specific object in its immediate environment. Using image analysis algorithms, we examined correlations between octopuses and their backgrounds. Field experiments show that when camouflaging, Octopus cyanea and O. vulgaris base their body patterns on selected features of nearby objects rather than attempting to match a large field of view. Such an approach enables the octopus to camouflage in partly occluded environments and to solve the problem of differences in appearance as a function of the viewing inclination of the observer

    Gravitational waves from single neutron stars: an advanced detector era survey

    Full text link
    With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f- and r-modes, the different ways that a neutron star could form and sustain a non-axisymmetric quadrupolar "mountain" deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor corrections to match published versio

    Optical switching of nuclear spin–spin couplings in semiconductors

    Get PDF
    Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear–spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings
    corecore