171 research outputs found

    Risk of post-pregnancy hypertension in women with a history of hypertensive disorders of pregnancy: nationwide cohort study.

    Get PDF
    Objectives To determine how soon after delivery the risk of post-pregnancy hypertension increases in women with hypertensive disorders of pregnancy and how the risk evolves over time.Design Nationwide register based cohort study.Setting Denmark.Populations 482 972 primiparous women with a first live birth or stillbirth between 1995 and 2012 (cumulative incidence analyses), and 1 025 118 women with at least one live birth or stillbirth between 1978 and 2012 (Cox regression analyses).Main outcome measures 10 year cumulative incidences of post-pregnancy hypertension requiring treatment with prescription drugs, and hazard ratios estimated using Cox regression.Results Of women with a hypertensive disorder of pregnancy in a first pregnancy in their 20s, 14% developed hypertension in the first decade post partum, compared with 4% of women with normotensive first pregnancies in their 20s. The corresponding percentages for women with a first pregnancy in their 40s were 32% and 11%, respectively. In the year after delivery, women with a hypertensive disorder of pregnancy had 12-fold to 25-fold higher rates of hypertension than did women with a normotensive pregnancy. Rates in women with a hypertensive disorder of pregnancy were threefold to 10-fold higher 1-10 years post partum and remained twice as high even 20 or more years later.Conclusions The risk of hypertension associated with hypertensive disorders of pregnancy is high immediately after an affected pregnancy and persists for more than 20 years. Up to one third of women with a hypertensive disorder of pregnancy may develop hypertension within a decade of an affected pregnancy, indicating that cardiovascular disease prevention in these women should include blood pressure monitoring initiated soon after pregnancy

    Defining Smallness for Gestational Age in the Early Years of the Danish Medical Birth Registry

    Get PDF
    Background: Being born small for gestational age (SGA) is associated with decreased insulin sensitivity and increased blood pressure in childhood, but the association with clinical disease in early adulthood is less certain. The Danish Medical Birth Registry has registered all births in Denmark since 1973, but due to variable data quality, data is most often used only from 1981 onwards, and birth registers in other countries may have similar problems for the early years. We wanted to examine whether the data can be used for identification of children born SGA and used in future research. Methodology/Principal Findings: All persons born between 1974 and 1996 were identified in the Danish Medical Birth Registry (n = 1.704.890). Immigrants and children without data on gestational age and birth weight were excluded, and a total of 1.348.106 children were included in the analysis. The difference between the different variables used in the history of the registry were examined, and the quality of data in the birth registry from 1974-1981 was examined and compared to subsequent years. Data on birth weight and gestational age in the early years of the registry is inconsistent, and the identification of children born SGA is inaccurate, with 49 % false-positives. The biggest source of error is due to the rough and inaccurate intervals used for gestational age. By using –3 standard deviations as a cut-off for the identification of children born SGA, the number of false-positives was reduced to 9%, while the amount of false-negatives were increased. Conclusion: Choosing –3 standard deviations for identifying children born SGA is a viable, though not optimal solution fo

    Heritability in the Efficiency of Nonsense-Mediated mRNA Decay in Humans

    Get PDF
    BACKGROUND: In eukaryotes mRNA transcripts of protein-coding genes in which an intron has been retained in the coding region normally result in premature stop codons and are therefore degraded through the nonsense-mediated mRNA decay (NMD) pathway. There is evidence in the form of selective pressure for in-frame stop codons in introns and a depletion of length three introns that this is an important and conserved quality-control mechanism. Yet recent reports have revealed that the efficiency of NMD varies across tissues and between individuals, with important clinical consequences. PRINCIPAL FINDINGS: Using previously published Affymetrix exon microarray data from cell lines genotyped as part of the International HapMap project, we investigated whether there are heritable, inter-individual differences in the abundance of intron-containing transcripts, potentially reflecting differences in the efficiency of NMD. We identified intronic probesets using EST data and report evidence of heritability in the extent of intron expression in 56 HapMap trios. We also used a genome-wide association approach to identify genetic markers associated with intron expression. Among the top candidates was a SNP in the DCP1A gene, which forms part of the decapping complex, involved in NMD. CONCLUSIONS: While we caution that some of the apparent inter-individual difference in intron expression may be attributable to different handling or treatments of cell lines, we hypothesize that there is significant polymorphism in the process of NMD, resulting in heritable differences in the abundance of intronic mRNA. Part of this phenotype is likely to be due to a polymorphism in a decapping enzyme on human chromosome 3

    Ectopic over-expression of tristetraprolin in human cancer cells promotes biogenesis of let-7 by down-regulation of Lin28

    Get PDF
    Tristetraprolin (TTP) is a AU-rich element (ARE) binding protein and exhibits suppressive effects on cell growth through down-regulation of ARE-containing oncogenes. The let-7 microRNA has emerged as a significant factor in tumor suppression. Both TTP and let-7 are often repressed in human cancers, thereby promoting oncogenesis by derepressing their target genes. In this work, an unexpected link between TTP and let-7 has been found in human cancer cells. TTP promotes an increase in expression of mature let-7, which leads to the inhibition of let-7 target gene CDC34 expression and suppresses cell growth. This event is associated with TTP-mediated inhibition of Lin28, which has emerged as a negative modulator of let-7. Lin28 mRNA contains ARE within its 3′-UTR and TTP enhances the decay of Lin28 mRNA through binding to its 3′-UTR. This suggests that the TTP-mediated down-regulation of Lin28 plays a key role in let-7 miRNA biogenesis in cancer cells

    The Essential Nucleolar Yeast Protein Nop8p Controls the Exosome Function during 60S Ribosomal Subunit Maturation

    Get PDF
    The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxyl-terminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Δnop8/GAL::NOP8. Interestingly, Nop8p mediates association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control the exosome function during pre-rRNA processing

    Loss of Maternal CTCF Is Associated with Peri-Implantation Lethality of Ctcf Null Embryos

    Get PDF
    CTCF is a highly conserved, multifunctional zinc finger protein involved in critical aspects of gene regulation including transcription regulation, chromatin insulation, genomic imprinting, X-chromosome inactivation, and higher order chromatin organization. Such multifunctional properties of CTCF suggest an essential role in development. Indeed, a previous report on maternal depletion of CTCF suggested that CTCF is essential for pre-implantation development. To distinguish between the effects of maternal and zygotic expression of CTCF, we studied pre-implantation development in mice harboring a complete loss of function Ctcf knockout allele. Although we demonstrated that homozygous deletion of Ctcf is early embryonically lethal, in contrast to previous observations, we showed that the Ctcf nullizygous embryos developed up to the blastocyst stage (E3.5) followed by peri-implantation lethality (E4.5–E5.5). Moreover, one-cell stage Ctcf nullizygous embryos cultured ex vivo developed to the 16–32 cell stage with no obvious abnormalities. Using a single embryo assay that allowed both genotype and mRNA expression analyses of the same embryo, we demonstrated that pre-implantation development of the Ctcf nullizygous embryos was associated with the retention of the maternal wild type Ctcf mRNA. Loss of this stable maternal transcript was temporally associated with loss of CTCF protein expression, apoptosis of the developing embryo, and failure to further develop an inner cell mass and trophoectoderm ex vivo. This indicates that CTCF expression is critical to early embryogenesis and loss of its expression rapidly leads to apoptosis at a very early developmental stage. This is the first study documenting the presence of the stable maternal Ctcf transcript in the blastocyst stage embryos. Furthermore, in the presence of maternal CTCF, zygotic CTCF expression does not seem to be required for pre-implantation development

    Reference programme: Diagnosis and treatment of headache disorders and facial pain. Danish Headache Society, 2nd Edition, 2012

    Get PDF
    Headache and facial pain are among the most common, disabling and costly disorders in Europe. Correct diagnosis and treatment is important for achieving a high quality of care. As a national organisation whose role is to educate and advocate for the needs of patients with primary headaches, the Danish Headache Society has set up a task force to develop a set of guidelines for the diagnosis, organisation and treatment of the most common types of headaches and for trigeminal neuralgia in Denmark. The guideline was published in Danish in 2010 and has been a great success. The Danish Headache Society decided to translate and publish our guideline in English to stimulate the discussion on optimal organisation and treatment of headache disorders and to encourage other national headache authorities to produce their own guidelines. The recommendations regarding the most common primary headaches and trigeminal neuralgia are largely in accordance with the European guidelines produced by the European Federation of Neurological Societies. The guideline provides a practical tool for use in daily clinical practice for primary care physicians, neurologists with a common interest in headache, as well as other health-care professionals treating headache patients. The guideline first describes how to examine and diagnose the headache patient and how headache treatment is organised in Denmark. This description is followed by individual sections on the characteristics, diagnosis, differential diagnosis and treatment of each of the major headache disorders and trigeminal neuralgia. The guideline includes many tables to facilitate a quick overview. Finally, the particular problems regarding headache in children and headache in relation to female hormones and pregnancy are described

    Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein Binds and Protects a Nuclear Noncoding RNA from Cellular RNA Decay Pathways

    Get PDF
    The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE) that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless β-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway
    corecore