29 research outputs found

    Enhanced Pro-Inflammatory Cytokine Responses following Toll-Like-Receptor Ligation in Schistosoma haematobium-Infected Schoolchildren from Rural Gabon

    Get PDF
    BACKGROUND: Schistosoma infection is thought to lead to down-regulation of the host's immune response. This has been shown for adaptive immune responses, but the effect on innate immunity, that initiates and shapes the adaptive response, has not been extensively studied. In a first study to characterize these responses, we investigated the effect of Schistosoma haematobium infection on cytokine responses of Gabonese schoolchildren to a number of Toll-like receptor (TLR) ligands. METHODOLOGY: Peripheral blood mononuclear cells (PBMCs) were collected from S. haematobium-infected and uninfected schoolchildren from the rural area of Zile in Gabon. PBMCs were incubated for 24 h and 72 h with various TLR ligands, as well as schistosomal egg antigen (SEA) and adult worm antigen (AWA). Pro-inflammatory TNF-alpha and anti-inflammatory/regulatory IL-10 cytokine concentrations were determined in culture supernatants. PRINCIPAL FINDINGS: Infected children produced higher adaptive IL-10 responses than uninfected children against schistosomal antigens (72 h incubation). On the other hand, infected children had higher TNF-alpha responses than uninfected children and significantly higher TNF-alpha to IL-10 ratios in response to FSL-1 and Pam3, ligands of TLR2/6 and TLR2/1 respectively. A similar trend was observed for the TLR4 ligand LPS while Poly(I:C) (Mda5/TLR3 ligand) did not induce substantial cytokine responses (24 h incubation). CONCLUSIONS: This pilot study shows that Schistosoma-infected children develop a more pro-inflammatory TLR2-mediated response in the face of a more anti-inflammatory adaptive immune response. This suggests that S. haematobium infection does not suppress the host's innate immune system in the context of single TLR ligation

    The ‘Exposed’ Population, Violent Crime in Public Space and the Night-time Economy in Manchester, United Kingdom

    Get PDF
    The daily rhythms of the city, the ebb and flow of people undertaking routines activities, inform the spatial and temporal patterning of crime. Being able to capture citizen mobility and delineate a crime-specific population denominator is a vital prerequisite of the endeavour to both explain and address crime. This paper introduces the concept of an exposed population-at-risk, defined as the mix of residents and non-residents who may play an active role as an offender, victim or guardian in a specific crime type, present in a spatial unit at a given time. This definition is deployed to determine the exposed population-at-risk for violent crime, associated with the night-time economy, in public spaces. Through integrating census data with mobile phone data and utilising fine-grained temporal and spatial violent crime data, the paper demonstrates the value of deploying an exposed (over an ambient) population-at-risk denominator to determine violent crime in public space hotspots on Saturday nights in Greater Manchester (UK). In doing so, the paper illuminates that as violent crime in public space rises, over the course of a Saturday evening, the exposed population-at-risk falls, implying a shifting propensity of the exposed population-at-risk to perform active roles as offenders, victims and/or guardians. The paper concludes with a discussion of the theoretical and policy relevance of these findings

    Diminished vagal activity and blunted diurnal variation of heart rate dynamics in posttraumatic stress disorder

    No full text
    Affected autonomic heart regulation is implicated in the pathophysiology of cardiovascular diseases and is associated with posttraumatic stress disorder (PTSD). However, although sympathetic hyperactivation has been repeatedly shown in PTSD, research has neglected parasympathetic function. The objective of this study is the long-term assessment of heart rate (HR) dynamics and its diurnal changes as an index of autonomic imbalance in PTSD. Since tonic parasympathetic activity underlies long-range correlation of heartbeat interval fluctuations in the healthy state, we included nonlinear (unifractal) analysis as an important and sensitive readout to assess functional alterations. We conducted electrocardiogram recordings over a 24-h period in 15 deployed male subjects with moderate to high levels of combat exposure (PTSD: n = 7; combat controls: n = 8) in the supine position. HR dynamics were assessed in two 5-h sub-epochs in the time and frequency domains, and by nonlinear analysis based on detrended fluctuation analysis. Psychiatric symptoms were assessed using structured interviews, including the Clinician Administered PTSD Scale. Subjects with PTSD showed significantly higher baseline HR, higher LF/HF ratio in the frequency domain, blunted differences between day and night-time measures, as well as a higher scaling coefficient αfast during the day, indicating diminished tonic parasympathetic activity. Diminished diurnal differences and blunted tonic parasympathetic activity altering HR dynamics suggest central neuroautonomic dysregulation that could represent a possible link to increased cardiovascular disease in PTSD. © Informa Healthcare USA, Inc

    Signalling through C-type lectin receptors: shaping immune responses

    No full text
    C-type lectin receptors (CLRs) expressed by dendritic cells are crucial for tailoring immune responses to pathogens. Following pathogen binding, CLRs trigger distinct signalling pathways that induce the expression of specific cytokines which determine T cell polarization fates. Some CLRs can induce signalling pathways that directly activate nuclear factor-kappa B, whereas other CLRs affect signalling by Toll-like receptors. Dissecting these signalling pathways and their effects on host immune cells is essential to understand the molecular mechanisms involved in the induction of adaptive immune responses. In this Review we describe the role of CLR signalling in regulating adaptive immunity and immunopathogenesis and discuss how this knowledge can be harnessed for the development of innovative vaccination approache

    Dendritic cells and parasites: from recognition and activation to immune response instruction

    No full text
    The effective defense against parasite infections requires the ability to mount an appropriate and controlled specific immune response able to eradicate the invading pathogen while limiting the collateral damage to self-tissues. Dendritic cells are key elements for the development of immunity against parasites; they control the responses required to eliminate these pathogens while maintaining host homeostasis. Ligation of dendritic cell pattern recognition receptors by pathogen-associated molecular pattern present in the parasites initiates signaling pathways that lead to the production of surface and secreted proteins that are required, together with the antigen, to induce an appropriate and timely regulated immune response. There is evidence showing that parasites can influence and regulate dendritic cell functions in order to promote a more permissive environment for their survival. In this review, we will focus on new insights about the ability of protozoan and helminth parasites or their products to modify dendritic cell function and discuss how this interaction is crucial in shaping the host response.Fil: Motran, Claudia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Ambrosio, Laura Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Volpini, Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Celias, Daiana Pamela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Cervi, Laura Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin
    corecore