165 research outputs found

    Angiotensin II-induced hypertension in rats is only transiently accompanied by lower renal oxygenation

    Get PDF
     This is the final version. Available from Springer Nature via the DOI in this record. Activation of the renin-angiotensin system may initiate chronic kidney disease. We hypothesised that renal hypoxia is a consequence of hemodynamic changes induced by angiotensin II and occurs prior to development of severe renal damage. Male Sprague-Dawley rats were infused continuously with angiotensin II (350 ng/kg/min) for 8 days. Mean arterial pressure (n = 5), cortical (n = 6) and medullary (n = 7) oxygenation (pO2) were continuously recorded by telemetry and renal tissue injury was scored. Angiotensin II increased arterial pressure gradually to 150 ± 18 mmHg. This was associated with transient reduction of oxygen levels in renal cortex (by 18 ± 2%) and medulla (by 17 ± 6%) at 10 ± 2 and 6 ± 1 hours, respectively after starting infusion. Thereafter oxygen levels normalised to pre-infusion levels and were maintained during the remainder of the infusion period. In rats receiving angiotensin II, adding losartan to drinking water (300 mg/L) only induced transient increase in renal oxygenation, despite normalisation of arterial pressure. In rats, renal hypoxia is only a transient phenomenon during initiation of angiotensin II-induced hypertension.British Heart FoundationBritish Heart FoundationDutch Kidney FoundationEuropean Union, Seventh Framework Programm

    Rapid hepatic clearance of full length CCN-2/CTGF: a putative role for LRP1-mediated endocytosis

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this record.CCN-2 (connective tissue growth factor; CTGF) is a key factor in fibrosis. Plasma CCN-2 has biomarker potential in numerous fibrotic disorders, but it is unknown which pathophysiological factors determine plasma CCN-2 levels. The proteolytic amino-terminal fragment of CCN-2 is primarily eliminated by the kidney. Here, we investigated elimination and distribution profiles of full length CCN-2 by intravenous administration of recombinant CCN-2 to rodents. After bolus injection in mice, we observed a large initial distribution volume (454 mL/kg) and a fast initial clearance (120 mL/kg/min). Immunosorbent assay and immunostaining showed that CCN-2 distributed mainly to the liver and was taken up by hepatocytes. Steady state clearance in rats, determined by continuous infusion of CCN-2, was fast (45 mL/kg/min). Renal CCN-2 clearance, determined by arterial and renal vein sampling, accounted for only 12 % of total clearance. Co-infusion of CCN-2 with receptor-associated protein (RAP), an antagonist of LDL-receptor family proteins, showed that RAP prolonged CCN-2 half-life and completely prevented CCN-2 internalization by hepatocytes. This suggests that hepatic uptake of CCN-2 is mediated by a RAP-sensitive mechanism most likely involving LRP1, a member of the LDL-receptor family involved in hepatic clearance of various plasma proteins. Surface plasmon resonance binding studies confirmed that CCN-2 is an LRP1 ligand. Co-infusion of CCN-2 with an excess of the heparan sulphate-binding protamine lowered the large initial distribution volume of CCN-2 by 88 % and reduced interstitial staining of CCN-2, suggesting binding of CCN-2 to heparan sulphate proteoglycans (HSPGs). Protamine did not affect clearance rate, indicating that RAP-sensitive clearance of CCN-2 is HSPG independent. In conclusion, unlike its amino-terminal fragment which is cleared by the kidney, full length CCN-2 is primarily eliminated by the liver via a fast RAP-sensitive, probably LRP1-dependent pathway.FibroGen, Inc

    Molecular mechanism of edema formation in nephrotic syndrome: therapeutic implications

    Get PDF
    Sodium retention and edema are common features of nephrotic syndrome that are classically attributed to hypovolemia and activation of the renin–angiotensin–aldosterone system. However, numbers of clinical and experimental findings argue against this underfill theory. In this review we analyze data from the literature in both nephrotic patients and experimental models of nephrotic syndrome that converge to demonstrate that sodium retention is not related to the renin–angiotensin–aldosterone status and that fluid leakage from capillary to the interstitium does not result from an imbalance of Starling forces, but from changes of the intrinsic properties of the capillary endothelial filtration barrier. We also discuss how most recent findings on the cellular and molecular mechanisms of sodium retention has allowed the development of an efficient treatment of edema in nephrotic patients

    A Functional Polymorphism in Renalase (Glu37Asp) Is Associated with Cardiac Hypertrophy, Dysfunction, and Ischemia: Data from the Heart and Soul Study

    Get PDF
    Renalase is a soluble enzyme that metabolizes circulating catecholamines. A common missense polymorphism in the flavin-adenine dinucleotide-binding domain of human renalase (Glu37Asp) has recently been described. The association of this polymorphism with cardiac structure, function, and ischemia has not previously been reported.We genotyped the rs2296545 single-nucleotide polymorphism (Glu37Asp) in 590 Caucasian individuals and performed resting and stress echocardiography. Logistic regression was used to examine the associations of the Glu37Asp polymorphism (C allele) with cardiac hypertrophy (LV mass>100 g/m2), systolic dysfunction (LVEF<50%), diastolic dysfunction, poor treadmill exercise capacity (METS<5) and inducible ischemia.Compared with the 406 participants who had GG or CG genotypes, the 184 participants with the CC genotype had increased odds of left ventricular hypertrophy (OR = 1.43; 95% CI 0.99-2.06), systolic dysfunction (OR = 1.72; 95% CI 1.01-2.94), diastolic dysfunction (OR = 1.75; 95% CI 1.05-2.93), poor exercise capacity (OR = 1.61; 95% CI 1.05-2.47), and inducible ischemia (OR = 1.49, 95% CI 0.99-2.24). The Glu37Asp (CC genotype) caused a 24-fold decrease in affinity for NADH and a 2.3-fold reduction in maximal renalase enzymatic activity.A functional missense polymorphism in renalase (Glu37Asp) is associated with cardiac hypertrophy, ventricular dysfunction, poor exercise capacity, and inducible ischemia in persons with stable coronary artery disease. Further studies investigating the therapeutic implications of this polymorphism should be considered

    Sympatho-renal axis in chronic disease

    Get PDF
    Essential hypertension, insulin resistance, heart failure, congestion, diuretic resistance, and functional renal disease are all characterized by excessive central sympathetic drive. The contribution of the kidney’s somatic afferent nerves, as an underlying cause of elevated central sympathetic drive, and the consequences of excessive efferent sympathetic signals to the kidney itself, as well as other organs, identify the renal sympathetic nerves as a uniquely logical therapeutic target for diseases linked by excessive central sympathetic drive. Clinical studies of renal denervation in patients with resistant hypertension using an endovascular radiofrequency ablation methodology have exposed the sympathetic link between these conditions. Renal denervation could be expected to simultaneously affect blood pressure, insulin resistance, sleep disorders, congestion in heart failure, cardiorenal syndrome and diuretic resistance. The striking epidemiologic evidence for coexistence of these disorders suggests common causal pathways. Chronic activation of the sympathetic nervous system has been associated with components of the metabolic syndrome, such as blood pressure elevation, obesity, dyslipidemia, and impaired fasting glucose with hyperinsulinemia. Over 50% of patients with essential hypertension are hyperinsulinemic, regardless of whether they are untreated or in a stable program of treatment. Insulin resistance is related to sympathetic drive via a bidirectional mechanism. In this manuscript, we review the data that suggests that selective impairment of renal somatic afferent and sympathetic efferent nerves in patients with resistant hypertension both reduces markers of central sympathetic drive and favorably impacts diseases linked through central sympathetics—insulin resistance, heart failure, congestion, diuretic resistance, and cardiorenal disorders

    Increased cardiovascular risk in rats with primary renal dysfunction; mediating role for vascular endothelial function

    Get PDF
    Primary chronic kidney disease is associated with high cardiovascular risk. However, the exact mechanisms behind this cardiorenal interaction remain unclear. We investigated the interaction between heart and kidneys in novel animal model for cardiorenal interaction. Normal Wistar rats and Munich Wistar Fromter rats, spontaneously developing renal dysfunction, were subjected to experimental myocardial infarction to induce cardiac dysfunction (CD) and combined cardiorenal dysfunction (CRD), respectively (N = 5–10). Twelve weeks later, cardiac- and renal parameters were evaluated. Cardiac, but not renal dysfunction was exaggerated in CRD. Accelerated cardiac dysfunction in CRD was indicated by decreased cardiac output (CD 109 ± 10 vs. CRD 79 ± 8 ml/min), diastolic dysfunction (E/e′) (CD 26 ± 2 vs. CRD 50 ± 5) and left ventricular overload (LVEDP CD 10.8 ± 2.8 vs. CRD 21.6 ± 1.7 mmHg). Congestion in CRD was confirmed by increased lung and atrial weights, as well as exaggerated right ventricular hypertrophy. Absence of accelerated renal dysfunction, measured by increased proteinuria, was supported by absence of additional focal glomerulosclerosis or further decline of renal blood flow in CRD. Only advanced peripheral endothelial dysfunction, as found in CRD, appeared to correlate with both renal and cardiac dysfunction parameters. Thus, proteinuric rats with myocardial infarction showed accelerated cardiac but not renal dysfunction. As parameters mimic the cardiorenal syndrome, these rats may provide a clinically relevant model to study increased cardiovascular risk due to renal dysfunction. Peripheral endothelial dysfunction was the only parameter that correlated with both renal and cardiac dysfunction, which may indicate a mediating role in cardiorenal interaction

    Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening

    Get PDF
    Aims More than 50% of patients with heart failure have preserved ejection fraction characterized by diastolic dysfunction. The prevalance of diastolic dysfunction is higher in females and associates with multiple comorbidities such as hypertension (HT), obesity, hypercholesterolemia (HC), and diabetes mellitus (DM). Although its pathophysiology remains incompletely understood, it has been proposed that these comorbidities induce systemic inflammation, coronary microvascular dysfunction, and oxidative stress, leading to myocardial fibrosis, myocyte stiffening and, ultimately, diastolic dysfunction. Here, we tested this hypothesis in a swine model chronically exposed to three common comorbidities.Methods and results DM (induced by streptozotocin), HC (produced by high fat diet), and HT (resulting from renal artery embolization), were produced in 10 female swine, which were followed for 6 months. Eight female healthy swine on normal pig-chow served as controls. The DM+HC+HT group showed hyperglycemia, HC, hypertriglyceridemia, renal dysfunction and HT, which were associated with systemic inflammation. Myocardial superoxide production was markedly increased, due to increased NOX activity and eNOS uncoupling, and associated with reduced NO production, and impaired coronary small artery endothelium-dependent vasodilation. These abnormalities were accompanied by increased myocardial collagen content, reduced capillary/fiber ratio, and elevated passive cardiomyocyte stiffness, resulting in an increased left ventricular end-diastolic stiffness (measured by pressure-volume catheter) and a trend towards a reduced E/A ratio (measured by cardiac MRI), while ejection fraction was maintained.Conclusions The combination of three common comorbidities leads to systemic inflammation, myocardial oxidative stress, and coronary microvascular dysfunction, which associate with myocardial stiffening and LV diastolic dysfunction with preserved ejection fraction

    Causes and consequences of increased sympathetic activity in renal disease

    No full text
    Much evidence indicates increased sympathetic nervous activity (SNA) in renal disease. Renal ischemia is probably a primary event leading to increased SNA. Increased SNA often occurs in association with hypertension. However, the deleterious effect of increased SNA on the diseased kidney is not only caused by hypertension. Another characteristic of renal disease is unbalanced nitric oxide (NO) and angiotensin (Ang) activity. Increased SNA in renal disease may be sustained because a state of NO-Ang II unbalance is also present in the hypothalamus. Very few studies have directly compared the efficacy of adrenergic blockade with other renoprotective measures. Third-generation beta-blockers seem to have more protective effects than traditional beta-blockers, possibly via stimulation of NO release. Although it has been extensively documented that muscle SNA is increased in chronic renal failure, data on renal SNA and cardiac SNA are not available for these patients before end-stage renal disease. It is also unknown whether additional treatment with third-generation beta-blockers can delay the progression of renal injury and prevent cardiac injury in chronic renal failure more efficiently than conventional treatment with angiotensin-converting enzyme inhibitors only.</p
    corecore