1,375 research outputs found

    Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy

    Get PDF
    Introduction: The rationally designed pyrrolobenzodiazepine (PBD) dimers emerged around ten years ago as a new class of drug component for antibody-drug conjugates (ADC). They produce highly cytotoxic DNA cross-links, exploiting a completely different cellular target to the auristatin and maytansinoid tubulin inhibitor classes and a different mode of DNA damage to other DNA interacting warheads such as calicheamicin. / Areas covered: The properties which make the PBD dimers suitable warheads for ADCs, and the development of the two main payload structures talirine and tesirine, are discussed. The clinical experience with the twenty PBD dimer-containing ADCs to enter the clinic is reviewed, with a focus on vadastuximab talirine and rovalpituzumab tesirine, both of which were discontinued following pivotal studies, and loncastuximab tesirine and camidanlumab tesirine which are progressing towards approval. / Expert opinion: Reviewing the clinical efficacy and safety data from almost forty clinical trials of PBD dimer-containing ADCs highlights the complexities and challenges of ADC early clinical development. It enables some conclusions to be made about reasons for failure and suggests strategies to optimise the future clinical development of this promising class of ADCs in a rapidly expanding field

    The emerging role of anti-CD25 directed therapies as both immune modulators and targeted agents in cancer

    Get PDF
    CD25 (also termed IL2RA) forms one component of the high‐affinity heterotrimeric interleukin 2 (IL2) receptor on activated T cells. Its affinity for IL2 and cellular function are tightly regulated and vary in different cell types. The high frequency of CD25 on the surface of many different haematological tumour cells is now well established and, apart from its prognostic significance, CD25 may be present on leukaemic stem cells and enable oncogenic signalling pathways in leukaemic cells. Additionally, high CD25 expression in activated circulating immune cells and Tregs is a factor that has already been exploited by IL2 immunotherapies for treatment of tumours and autoimmune disease. The relative clinical safety and efficacy of administering anti‐CD25 radioimmunoconjugates and immunotoxins in various haematological tumour indications has been established and clinical trials of a novel CD25‐directed antibody drug conjugate are underway

    WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway

    Get PDF
    Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalization induced by ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies (MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalized EGFR co-segregates with exogenously expressed pre-melanosomal markers OA1 and fibrillar PMEL, following early endosomal sorting by the actin polymerization-promoting WASH complex. Stress-internalized EGFR is retained intracellularly by continued p38 activity in a mechanism involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal vesicles (ILVs) of MVBs. In contrast to the internalization-independent EGF-stimulated activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalization and intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis and might contribute to chemoresistance

    A Strategy for Imidazotetrazine Prodrugs with Anti-cancer Activity Independent of MGMT and MMR

    Get PDF
    The imidazotetrazine ring is an acid-stable precursor and prodrug of highly-reactive alkyl diazonium ions. We have shown that this reactivity can be managed productively in an aqueous system for the generation of aziridinium ions with 96% efficiency. The new compounds are potent DNA alkylators and have antitumor activity independent of the O6-methylguanine-DNA methyltransferase and DNA mismatch repair constraints that limit the use of temozolomide

    The Role of Specific ATP-Binding Cassette Transporters in the Acquired Resistance to Pyrrolobenzodiazepine Dimer-Containing Antibody-Drug Conjugates

    Get PDF
    Antibody–drug conjugates (ADC) containing pyrrolobenzodiazepine (PBD) dimers are being evaluated clinically in both hematologic and solid tumors. These include ADCT-301 (camidanlumab tesirine) and ADCT-402 (loncastuximab tesirine) in pivotal phase II trials that contain the payload tesirine, which releases the PBD dimer warhead SG3199. An important consideration in future clinical development is acquired resistance. The aim was to generate and characterize PBD acquired resistant cell lines in both hematologic and solid tumor settings. Human Karpas-299 (ALCL) and NCI-N87 (gastric cancer) cells were incubated with increasing IC50 doses of ADC (targeting CD25 and HER2, respectively) or SG3199 in a pulsed manner until stable acquired resistance was established. The level of resistance achieved was approximately 3,000-fold for ADCT-301 and 3-fold for SG3199 in Karpas-299, and 8-fold for ADCT-502 and 4-fold for SG3199 in NCI-N87. Cross-resistance between ADC and SG3199, and with an alternative PBD-containing ADC or PBD dimer was observed. The acquired resistant lines produced fewer DNA interstrand cross-links, indicating an upstream mechanism of resistance. Loss of antibody binding or internalization was not observed. A human drug transporter PCR Array revealed several genes upregulated in all the resistant cell lines, including ABCG2 and ABCC2, but not ABCB1(MDR1). These findings were confirmed by RT-PCR and Western blot, and inhibitors and siRNA knockdown of ABCG2 and ABCC2 recovered drug sensitivity. These data show that acquired resistance to PBD-ADCs and SG3199 can involve specific ATP-binding cassette drug transporters. This has clinical implications as potential biomarkers of resistance and for the rational design of drug combinations

    Minor structural modifications to alchemix influence mechanism of action and pharmacological activity

    Get PDF
    Alchemix is an exemplar of a class of anthraquinone with efficacy against multidrug resistant tumors. We have explored further the mechanism of action of alchemix and investigated the effect of extending its side arm bearing the alkylating functionality with regard to DNA binding and activity against multidrug resistant cancer cells. Increasing the distance between the intercalating chromophore and the alkylating functionality of ICT2901 (propyl), ICT2902 (butyl) and ICT2903 (pentyl), led to a higher number of DNA alkylation sites, more potent topoisomerase II inhibition and generated more apoptotic and necrotic cells when analysed in p53-proficient HCT116 cells. Intriguingly, alchemix, the compound with the shortest distance between its intercalative chromophore and alkylating functionality (ethyl), did not conform to this SAR. A different toxicity pattern against DNA repair defective CHO cell lines as well as arrest of cells in G1 supports a somewhat distinct mode of action by alchemix compared with its analogues. Importantly, both alchemix and ICT2901 demonstrated greater cytotoxic activity against anthraquinone-resistant MCF-7/adr cells than wild-type MCF-7 cells. Subtle synthetic modification in this anthraquinone series has led to significant changes to the stability of DNA-compound complexes and cellular activity. Given that the failure of chemotherapy in the clinic is often associated with MDR, the results of both alchemix and ICT2901 represent important advances towards improved therapies

    Activity of the DNA minor groove cross-linking agent SG2000 (SJG-136) against canine tumours

    Get PDF
    BACKGROUND: Cancer is the leading cause of death in older dogs and its prevalence is increasing. There is clearly a need to develop more effective anti-cancer drugs in dogs. SG2000 (SJG-136) is a sequence selective DNA minor groove cross-linking agent. Based on its in vitro potency, the spectrum of in vivo and clinical activity against human tumours, and its tolerability in human patients, SG2000 has potential as a novel therapeutic against spontaneously occurring canine malignancies. RESULTS: In vitro cytotoxicity was assessed using SRB and MTT assays, and in vivo activity was assessed using canine tumour xenografts. DNA interstrand cross-linking (ICL) was determined using a modification of the single cell gel electrophoresis (comet) assay. Effects on cell cycle distribution were assessed by flow cytometry and measurement of γ-H2AX by immunofluorescence and immunohistochemistry. SG2000 had a multi-log differential cytotoxic profile against a panel of 12 canine tumour cell lines representing a range of common tumour types in dogs. In the CMeC-1 melanoma cell line, DNA ICLs increased linearly with dose following a 1 h treatment. Peak ICL was achieved within 1 h and no removal was observed over 48 h. A relationship between DNA ICL formation and cytotoxicity was observed across cell lines. The formation of γ-H2AX foci was slow, becoming evident after 4 h and reaching a peak at 24 h. SG2000 exhibited significant anti-tumour activity against two canine melanoma tumour models in vivo. Anti-tumour activity was observed at 0.15 and 0.3 mg/kg given i.v. either once, or weekly x 3. Dose-dependent DNA ICL was observed in tumours (and to a lower level in peripheral blood mononuclear cells) at 2 h and persisted at 24 h. ICL increased following the second and third doses in a repeated dose schedule. At 24 h, dose dependent γ-H2AX foci were more numerous than at 2 h, and greater in tumours than in peripheral blood mononuclear cells. SG2000-induced H2AX phosphorylation measured by immunohistochemistry showed good correspondence, but less sensitivity, than measurement of foci. CONCLUSIONS: SG2000 displayed potent activity in vitro against canine cancer cell lines as a result of the formation and persistence of DNA ICLs. SG2000 also had significant in vivo antitumour activity against canine melanoma xenografts, and the comet and γ-H2AX foci methods were relevant pharmacodynamic assays. The clinical testing of SG2000 against spontaneous canine cancer is warranted. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0534-2) contains supplementary material, which is available to authorized users

    DNA alkylation and interstrand cross-linking by treosulfan

    Get PDF
    The anti-tumour drug treosulfan (L-threitol 1,4-bismethanesulphonate, Ovastat) is a prodrug for epoxy compounds by converting non-enzymatically to L-diepoxybutane via the corresponding monoepoxide under physiological conditions. The present study supports the hypothesis that this conversion of treosulfan is required for cytotoxicity in vitro. DNA alkylation and interstrand cross-linking of plasmid DNA is observed after treosulfan treatment, but this is again produced via the epoxide species. Alkylation occurs at guanine bases with a sequence selectivity similar to other alkylating agents such as the nitrogen mustards. In treosulfan-treated K562 cells, cross-links form slowly, reaching a peak at approximately 24 h. Incubation of K562 cells with preformed epoxides shows faster and more efficient DNA cross-linking. © 1999 Cancer Research Campaig

    Mini workshop - Real World Engineering Projects: Discovery-based curriculum modules for first-year students

    Get PDF
    This mini workshop is organized to provide an interactive forum for the introduction a set of six new curriculum modules developed under IEEE's Real World Engineering Projects (RWEP) program. The modules, which are representative of a larger collection of curriculum modules available to the public via an open-access RWEP web portal, are designed for use in the first-year engineering and computer science classroom, and are hands-on, team-based projects that emphasize the societal impact of the work that engineers do. After a brief introduction to the RWEP program and the six showcased curriculum modules, the authors of the modules will present their ideas and demonstrate the laboratory activities associated with their modules in interactive, informal simultaneous sessions. © 2010 IEEE.published_or_final_versionThe 40th ASEE/IEEE Frontiers in Education Conference (FIE) 2010, Arlington, VA., 27-30 October 2010. In Proceedings of 40th FIE, 2010, p. T2A1-T2A

    Mini workshop - Real World Engineering Projects: Discovery-based curriculum modules for first-year students

    Get PDF
    This mini workshop is organized to provide an interactive forum for the introduction a set of six new curriculum modules developed under IEEE's Real World Engineering Projects (RWEP) program. The modules, which are representative of a larger collection of curriculum modules available to the public via an open-access RWEP web portal, are designed for use in the first-year engineering and computer science classroom, and are hands-on, team-based projects that emphasize the societal impact of the work that engineers do. After a brief introduction to the RWEP program and the six showcased curriculum modules, the authors of the modules will present their ideas and demonstrate the laboratory activities associated with their modules in interactive, informal simultaneous sessions. © 2010 IEEE.published_or_final_versionThe 40th ASEE/IEEE Frontiers in Education Conference (FIE) 2010, Arlington, VA., 27-30 October 2010. In Proceedings of 40th FIE, 2010, p. T2A1-T2A
    corecore