41 research outputs found

    Sucrose and Starch Metabolism

    No full text
    International audienceThe metabolism of starch and sucrose fuels all aspects of plant growth and development. Over the last decade, significant advances have been made in our understanding of the metabolism of these compounds through the use of model systems, mainly Arabidopsis. Legume species are characterised by their capacity to form symbioses with Rhizobium, a nitrogen-fixing bacterium, leading to up to half the carbon assimilated in photosynthesis being sequestered to their roots. Study of a legume model may therefore increase our knowledge about carbohydrate turnover. We review here the resources available and the contribution that research on Lotus japonicus has made to our knowledge of sucrose breakdown and starch metabolism in relation to plant growth and development processes, especially processes that are legume specific

    Retrowedge-related Carboniferous units and coeval magmatism in the northwestern Neuquén province, Argentina

    Get PDF
    The studied Carboniferous units comprise metasedimentary (Guaraco Norte Formation), pyroclastic (Arroyo del Torreón Formation), and sedimentary (Huaraco Formation) rocks that crop out in the northwestern Neuquén province, Argentina. They form part of the basement of the Neuquén Basin and are mostly coeval with the Late Paleozoic accretionary prism complex of the Coastal Cordillera, south-central Chile. U–Pb SHRIMP dating of detrital zircon yielded a maximum depositional age of 374 Ma (Upper Devonian) for the Guaraco Norte Formation and 389 Ma for the Arroyo del Torreón Formation. Detrital magmatic zircon from the Guaraco Norte Formation are grouped into two main populations of Devonian and Ordovician (Famatinian) ages. In the Arroyo del Torreón Formation, zircon populations are also of Devonian and Ordovician (Famatinian), as well as of Late Neoproterozoic and Mesoproterozoic ages. In both units, there is a conspicuous population of Devonian magmatic zircon grains (from 406 ± 4 Ma to 369 ± 5 Ma), indicative of active magmatism at that time range. The eHf values of this population range between -2.84 and -0.7, and the TDM-(Hf) are mostly Mesoproterozoic, suggesting that the primary sources of the Devonian magmatism contained small amounts of Mesoproterozoic recycled crustal components. The chemical composition of the Guaraco Norte Formation corresponds to recycled, mature polycyclic sediment of mature continental provenance, pointing to a passive margin with minor inputs from continental margin magmatic rocks.The chemical signature of the Huaraco Formation indicates that a magmatic arc was the main provenance for sediments of this unit, which is consistent with the occurrence of tuff—mostly in the Arroyo del Torreón Formation and very scarcely in the Huaraco Formation—with a volcanic-arc signature, jointly indicating the occurrence of a Carboniferous active arc magmatism during the deposition of the two units. The Guaraco Norte Formation is interpreted to represent passive margin deposits of mostly Lower Carboniferous age (younger than 374 Ma and older than 326 Ma) that precede the onset of the accretionary prism in Chile and extend into the earliest stage of the accretion, in a retrowedge position. The Arroyo del Torreón and Huaraco formations are considered to be retrowedge basin deposits to the early frontal accretionary prism (Eastern Series) of Chile. The presence of volcanism with arc signature in the units provides evidence of a Mississippian magmatic arc that can be correlated with limited exposures of the same age in the Frontal Cordillera (Argentina). The arc would have migrated to the West (Coastal Batholith) during Pennsylvanian–Permian times (coevally with the later basal accretionary prism/Western Series). The source of a conspicuous population of Devonian detrital zircon interpreted to be of magmatic origin in the studied units is discussed in various possible geotectonic scenarios, the preferred model being a magmatic arc developed in the Chilenia block, related to a west-dipping subduction beneath Chilenia before and shortly after its collision against Cuyania/Gondwana, at around 390 Ma and not linked to the independent, Devonian–Mississippian arc, developed to the south, in Patagonia
    corecore