9 research outputs found

    An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Get PDF
    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy

    Plant-based diets to manage the risks and complications of chronic kidney disease

    Get PDF
    International audienceTraditional dietary recommendations for patients with chronic kidney disease (CKD) focus on the quantity of nutrients consumed. Without appropriate dietary counselling, these restrictions can result in a low intake of fruits and vegetables and a lack of diversity in the diet. Plant nutrients and plant-based diets could have beneficial effects in patients with CKD: increased fibre intake shifts the gut microbiota towards reduced production of uraemic toxins; plant fats, particularly olive oil, have anti-atherogenic effects; plant anions might mitigate metabolic acidosis and slow CKD progression; and as plant phosphorus has a lower bioavailability than animal phosphorus, plant-based diets might enable better control of hyperphosphataemia. Current evidence suggests that promoting the adoption of plant-based diets has few risks but potential benefits for the primary prevention of CKD, as well as for delaying progression in patients with CKD G3-5. These diets might also help to manage and prevent some of the symptoms and metabolic complications of CKD. We suggest that restriction of plant foods as a strategy to prevent hyperkalaemia or undernutrition should be individualized to avoid depriving patients with CKD of these potential beneficial effects of plant-based diets. However, research is needed to address knowledge gaps, particularly regarding the relevance and extent of diet-induced hyperkalaemia in patients undergoing dialysis

    Plant-based diets to manage the risks and complications of chronic kidney disease

    No full text
    corecore