19 research outputs found

    Transplante isogênico de ilhotas de Langerhans no fígado de ratos: metodologia para separação e purificação das ilhotas de Langerhans Isogenic islet transplantation on the rat liver: Method for isolation and purification of the rat islets

    No full text
    A maior indicação do transplante de pâncreas ou de ilhotas de Langerhans é o diabetes mellitus do tipo I. O processo deve suprir as necessidades de insulina mantendo os níveis glicêmicos dentro da normalidade. Estudou-se o transplante isogênico de ilhotas de Langerhans no fígado de ratos WAG-RT1u. Com o método de separação e purificação das ilhotas de Langerhans obteve-se 2.834 ± 551,64 ilhotas com pureza de 83 ± 2,45%. O transplante de 2.834 ± 551,64 ilhotas de Langerhans no fígado destes animais, normalizou a glicemia que chegou a 35 mmol/L após indução do diabetes pela estreptozotocina, ficando em 9,62 ± 2,65 mmol/L nos primeiros 10 dias após o enxerto e 7,43 ± 0,27 mmol/L nos dias subseqüentes (P <0,05). O tempo médio de sobrevida das ilhotas transplantadas foi de 73 dias. Assim, o método para separação e purificação de ilhotas de Langerhans de ratos foi eficaz e o isotransplante de ilhotas de Langerhans em ratos foi efetivo na correção do diabetes induzido por estreptozotocina, havendo sobrevida média superior a 73 dias do enxerto e do animal quando os animais foram sacrificados.<br>The major indication for pancreas or islet transplantation is diabetes mellitus type I. This process has to supply the insulin necessity keeping glucose under control. We have studied isogenic islet transplantation on the rat (WAG-RT1u) liver. The method of isolation and purification of the islets obtained 2.834 ± 551,64 islets with purity of 83 ± 2,45%. Diabetes was induced by streptozotocin and seric glucose prior transplantation was 35 mmol/L. The islet transplantation of 2.834 ± 551,64 islets in the rat liver has normalized glucose test from 9,62 ± 2,65 mmol/L 10 days after transplantation to 7,43 ± 0,27 mmol/L later in the follow-up (P <0,05). The median survival time of the islets was 73 days. In conclusion both the method of isolation and purification of the islets and islet transplantation was effective in the control of the diabetes induced by streptozotocin with median survival time of both islet and rat more than 73 days when rats were sacrificied

    Chromosome conformation elucidates regulatory relationships in developing human brain.

    Get PDF
    Three-dimensional physical interactions within chromosomes dynamically regulate gene expression in a tissue-specific manner. However, the 3D organization of chromosomes during human brain development and its role in regulating gene networks dysregulated in neurodevelopmental disorders, such as autism or schizophrenia, are unknown. Here we generate high-resolution 3D maps of chromatin contacts during human corticogenesis, permitting large-scale annotation of previously uncharacterized regulatory relationships relevant to the evolution of human cognition and disease. Our analyses identify hundreds of genes that physically interact with enhancers gained on the human lineage, many of which are under purifying selection and associated with human cognitive function. We integrate chromatin contacts with non-coding variants identified in schizophrenia genome-wide association studies (GWAS), highlighting multiple candidate schizophrenia risk genes and pathways, including transcription factors involved in neurogenesis, and cholinergic signalling molecules, several of which are supported by independent expression quantitative trait loci and gene expression analyses. Genome editing in human neural progenitors suggests that one of these distal schizophrenia GWAS loci regulates FOXG1 expression, supporting its potential role as a schizophrenia risk gene. This work provides a framework for understanding the effect of non-coding regulatory elements on human brain development and the evolution of cognition, and highlights novel mechanisms underlying neuropsychiatric disorders

    Systems Genetic Analysis of Osteoblast-Lineage Cells

    Get PDF
    The osteoblast-lineage consists of cells at various stages of maturation that are essential for skeletal development, growth, and maintenance. Over the past decade, many of the signaling cascades that regulate this lineage have been elucidated; however, little is known of the networks that coordinate, modulate, and transmit these signals. Here, we identify a gene network specific to the osteoblast-lineage through the reconstruction of a bone co-expression network using microarray profiles collected on 96 Hybrid Mouse Diversity Panel (HMDP) inbred strains. Of the 21 modules that comprised the bone network, module 9 (M9) contained genes that were highly correlated with prototypical osteoblast maker genes and were more highly expressed in osteoblasts relative to other bone cells. In addition, the M9 contained many of the key genes that define the osteoblast-lineage, which together suggested that it was specific to this lineage. To use the M9 to identify novel osteoblast genes and highlight its biological relevance, we knocked-down the expression of its two most connected “hub” genes, Maged1 and Pard6g. Their perturbation altered both osteoblast proliferation and differentiation. Furthermore, we demonstrated the mice deficient in Maged1 had decreased bone mineral density (BMD). It was also discovered that a local expression quantitative trait locus (eQTL) regulating the Wnt signaling antagonist Sfrp1 was a key driver of the M9. We also show that the M9 is associated with BMD in the HMDP and is enriched for genes implicated in the regulation of human BMD through genome-wide association studies. In conclusion, we have identified a physiologically relevant gene network and used it to discover novel genes and regulatory mechanisms involved in the function of osteoblast-lineage cells. Our results highlight the power of harnessing natural genetic variation to generate co-expression networks that can be used to gain insight into the function of specific cell-types
    corecore