31 research outputs found

    Broken replication forks trigger heritable DNA breaks in the terminus of a circular chromosome

    Get PDF
    <p><u>(A) Circular map of the <i>E</i>. <i>coli</i> chromosome</u>: <i>oriC</i>, <i>dif</i> and <i>terD</i> to <i>terB</i> sites are indicated. Numbers refer to the chromosome coordinates (in kb) of MG1655. (<u>B) Linear map of the terminus region:</u> chromosome coordinates are shown increasing from left to right, as in the marker frequency panels (see Figure 1C for example), therefore in the opposite direction to the circular map. In addition to <i>dif</i> and <i>ter</i> sites, the positions of the <i>parS</i><sub>pMT1</sub> sites used for microscopy experiments are indicated. (<u>C) MFA analysis of terminus DNA loss in the <i>recB</i> mutant</u>: sequence read frequencies of exponential phase cells normalized to the total number of reads were calculated for each strain. Ratios of normalized reads in isogenic wild-type and <i>recB</i> mutant are plotted against chromosomal coordinates (in kb). The profile ratio of the terminus region is enlarged and the profile of the corresponding entire chromosomes is shown in inset. Original normalized profiles used to calculate ratios are shown in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007256#pgen.1007256.s005" target="_blank">S1 Fig</a>. The position of <i>dif</i> is indicated by a red arrow. The <i>ter</i> sites that arrest clockwise forks (<i>terC</i>, <i>terB</i>, green arrow) and counter-clockwise forks (<i>terA</i>, <i>terD</i>, blue arrow) are shown. <u>(D) Schematic representation of focus loss in the <i>recB</i> mutant:</u> Time-lapse microscopy experiments showed that loss of a focus in the <i>recB</i> mutant occurs concomitantly with cell division in one of two daughter cells, and that the cell that keeps the focus then generates a focus-less cell at each generation. The percentage of initial events was calculated as the percentage of cell divisions that generate a focus-less cell, not counting the following generations. In this schematic representation, two initial events occurred (generations #2 and #7) out of 9 generations, and focus loss at generation #2 is heritable. Panels shown in this figure were previously published in [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007256#pgen.1007256.ref019" target="_blank">19</a>] and are reproduced here to introduce the phenomenon.</p

    Termination of Replication in Bacteria

    Full text link
    n the case of a circular bacterial chromosome, termination of DNA replication occurs when the two replication forks, progressing in opposite directions, meet and fuse in a specific region of the chromosome, which is generally diametrically opposed to the site of initiation of DNA replication. Most research has focused on the systems utilized by the rod-shaped Gram-negative Escherichia coli and Gram-positive Bacillus subtilis

    The impact of single cysteine residue mutations on the replication terminator protein

    Full text link
    We report the structural and biophysical consequences of cysteine substitutions in the DNA-binding replication terminator protein (RTP) of Bacillus subtilis, that resulted in an optimised RTP mutant suitable for structural studies. The cysteine residue 110 was replaced with alanine, valine or serine. Protein secondary structure and stability (using circular dichroism spectropolarimetry), self-association (using analytical ultracentrifugation), and DNA-binding measurements revealed RTP.C110S to be the most similar mutant to wild-type RTP. The C110A and C110V.RTP mutants were less soluble, less stable and showed lower DNA-binding affinity. The structure of RTP.C110S, solved to 2.5Å resolution using crystallographic methods, showed no major structural perturbation due to the mutation. Heteronuclear NMR spectroscopic studies revealed subtle differences in the electronic environment about the site of mutation. The study demonstrates the suitability of serine as a substitute for cysteine in RTP and the high sensitivity of protein behaviour to single amino acid substitutions. © 2003 Elsevier kInc. All rights reserved

    Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy

    Full text link
    Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the dimeric 29 kDa replication terminator protein (RTP) and DNA terminator sites. We have used NMR spectroscopy to probe the changes in 1H-15N correlation spectra of a 15N-labelled RTP.C110S mutant upon the addition of a 21 base pair symmetrical DNA binding site. Assignment of the 1H-15N correlations was achieved using a suite of triple resonance NMR experiments with 15N,13C,70% 2H enriched protein recorded at 800 MHz and using TROSY pulse sequences. Perturbations to 1H-15N spectra revealed that the N-termini, α3-helices and several loops are affected by the binding interaction. An analysis of this data in light of the crystallographically determined apo- and DNA-bound forms of RTP.C110S revealed that the NMR spectral perturbations correlate more closely to protein structural changes upon complex formation rather than to interactions at the protein-DNA interface. © 2005 Elsevier Inc. All rights reserved

    Structure of the RTP-DNA complex and the mechanism of polar replication fork arrest

    Full text link
    The coordinated termination of DNA replication is an important step in the life cycle of bacteria with circular chromosomes, but has only been defined at a molecular level in two systems to date. Here we report the structure of an engineered replication terminator protein (RTP) ot Bacillus subtilis in complex with a 21 base pair DNA by X-ray crystallography at 2.5 Å resolution. We also use NMR spectroscopic titration techniques. This work reveals a novel DNA interaction involving a dimeric 'winged helix' domain protein that differs from predictions. While the two recognition helices of RTP ate in close contact with the B-form DNA major grooves, the 'wings' and N-termini of RTP do not form intimate contacts with the DNA. This structure provides insight into the molecular basis of polar replication fork arrest based on a model of cooperative binding and differential binding affinities of RTP to the two adjacent binding sites in file complete terminator

    Land cover and land use analysis in coastal Bangladesh

    No full text
    Land cover and land use (LCLU) analysis is a central determinant of the current and future relationship between people and local ecosystem services. It provides the spatial basis for the integrated analysis of the study area. Historical change (1989–2010) is identified using classification techniques based on available satellite imagery supported by other data. Nine categories of LULC are identified; water, Bagda (brackish shrimp farming), Galda (freshwater prawn farming), agriculture (non-waterlogged), agriculture (waterlogged), wetlands and mudflats, mangrove, rural settlements and major urban areas. The analysis shows an increase in aquaculture (mainly replacing rice fields), with agriculture becoming more intermixed with settlements. Future LULC scenarios are determined based on stakeholder narratives
    corecore