37 research outputs found

    Cheaters allow cooperators to prosper

    Get PDF
    Cooperation based on the production of costly common goods is observed throughout nature. This is puzzling, as cooperation is vulnerable to exploitation by defectors which enjoy a fitness advantage by consuming the common good without contributing fairly. Depletion of the common good can lead to population collapse and the destruction of cooperation. However, population collapse implies small population size, which, in a structured population, is known to favor cooperation. This happens because small population size increases variability in cooperator frequency across different locations. Since individuals in cooperator-dominated locations (which are most likely cooperators) will grow more than those in defector-dominated locations (which are most likely defectors), cooperators can outgrow defectors globally despite defectors outgrowing cooperators in each location. This raises the possibility that defectors can lead to conditions that sometimes rescue cooperation from defector-induced destruction. We demonstrate multiple mechanisms through which this can occur, using an individual-based approach to model stochastic birth, death, migration, and mutation events. First, during defector-induced population collapse, defectors occasionally go extinct before cooperators by chance, which allows cooperators to grow. Second, empty locations, either preexisting or created by defector-induced population extinction, can favor cooperation because they allow cooperator but not defector migrants to grow. These factors lead to the counterintuitive result that the initial presence of defectors sometimes allows better survival of cooperation compared to when defectors are initially absent. Finally, we find that resource limitation, inducible by defectors, can select for mutations adaptive to resource limitation. When these mutations are initially present at low levels or continuously generated at a moderate rate, they can favor cooperation by further reducing local population size. We predict that in a structured population, small population sizes precipitated by defectors provide a "built-in" mechanism for the persistence of cooperation

    Co-evolutionary dynamics of collective action with signaling for a quorum

    Get PDF
    Collective signaling for a quorum is found in a wide range of organisms that face collective action problems whose successful solution requires the participation of some quorum of the individuals present. These range from humans, to social insects, to bacteria. The mechanisms involved, the quorum required, and the size of the group may vary. Here we address the general question of the evolution of collective signaling at a high level of abstraction. We investigate the evolutionary dynamics of a population engaging in a signaling N-person game theoretic model. Parameter settings allow for loners and cheaters, and for costly or costless signals. We find a rich dynamics, showing how natural selection, operating on a population of individuals endowed with the simplest strategies, is able to evolve a costly signaling system that allows individuals to respond appropriately to different states of Nature. Signaling robustly promotes cooperative collective action, in particular when coordinated action is most needed and difficult to achieve. Two different signaling systems may emerge depending on Nature's most prevalent states.Funding: This research was supported by FEDER through POFC - COMPETE, FCT-Portugal through grants SFRH/BD/86465/2012, PTDC/MAT/122897/2010, EXPL/EEI-SII/2556/2013, and by multi-annual funding of CMAF-UL, CBMA-UM and INESC-ID (under the projects PEst-OE/BIA/UI4050/2014 and UID/CEC/50021/2013) provided by FCT-Portugal, and by Fundacao Calouste Gulbenkian through the "Stimulus to Research" program for young researchers. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Killing by type VI secretion drives genetic phase separation and correlates with increased cooperation

    Get PDF
    By nature of their small size, dense growth and frequent need for extracellular metabolism, microbes face persistent public goods dilemmas. Genetic assortment is the only general solution stabilizing cooperation, but all known mechanisms structuring microbial populations depend on the availability of free space, an often unrealistic constraint. Here we describe a class of self-organization that operates within densely packed bacterial populations. Through mathematical modelling and experiments with Vibrio cholerae, we show how killing adjacent competitors via the Type VI secretion system (T6SS) precipitates phase separation via the ‘Model A' universality class of order-disorder transition mediated by killing. We mathematically demonstrate that T6SS-mediated killing should favour the evolution of public goods cooperation, and empirically support this prediction using a phylogenetic comparative analysis. This work illustrates the twin role played by the T6SS, dealing death to local competitors while simultaneously creating conditions potentially favouring the evolution of cooperation with kin

    Making pathogens sociable: the emergence of high relatedness through limited host invasibility

    Get PDF
    Cooperation depends upon high relatedness, the high genetic similarity of interacting partners relative to the wider population. For pathogenic bacteria, which show diverse cooperative traits, the population processes that determine relatedness are poorly understood. Here, we explore whether within-host dynamics can produce high relatedness in the insect pathogen Bacillus thuringiensis. We study the effects of host/pathogen interactions on relatedness via a model of host invasion and fit parameters to competition experiments with marked strains. We show that invasibility is a key parameter for determining relatedness and experimentally demonstrate the emergence of high relatedness from well-mixed inocula. We find that a single infection cycle results in a bottleneck with a similar level of relatedness to those previously reported in the field. The bottlenecks that are a product of widespread barriers to infection can therefore produce the population structure required for the evolution of cooperative virulence
    corecore