198 research outputs found

    Cytologic features of nipple aspirate fluid using an automated non-invasive collection device: a prospective observational study

    Get PDF
    BACKGROUND: Detection of cytologic atypia in nipple aspirate fluid (NAF) has been shown to be a predictor of risk for development of breast carcinoma. Manual collection of NAF for cytologic evaluation varies widely in terms of efficacy, ease of use, and patient acceptance. We investigated a new automated device for the non-invasive collection of NAF in the office setting. METHODS: A multi-center prospective observational clinical trial involving asymptomatic women designed to assess fluid production, adequacy, safety and patient acceptance of the HALO NAF Collection System (NeoMatrix, Irvine, CA). Cytologic evaluation of all NAF samples was performed using previously described classification categories. RESULTS: 500 healthy women were successfully enrolled. Thirty-eight percent (190/500) produced fluid and 187 were available for cytologic analysis. Cytologic classification of fluid producers showed 50% (93/187) Category 0 (insufficient cellular material), 38% (71/187) Category I (benign non-hyperplastic ductal epithelial cells), 10% (18/187) Category II (benign hyperplastic ductal epithelial cells), 3% (5/187) Category III (atypical ductal epithelial cells) and none were Category IV (unequivocal malignancy). Overall, 19% of the subjects produced NAF with adequate cellularity and 1% were found to have cytologic atypia. CONCLUSION: The HALO system is a simple, safe, rapid, automated method for standardized collection of NAF which is acceptable to patients. Cytologic assessment of HALO-collected NAF showed the ability to detect benign and pre-neoplastic ductal epithelial cells from asymptomatic volunteers

    Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles

    Get PDF
    BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    A before-after implementation trial of smoking cessation guidelines in hospitalized veterans

    Get PDF
    Abstract Background Although most hospitalized smokers receive some form of cessation counseling during hospitalization, few receive outpatient cessation counseling and/or pharmacotherapy following discharge, which are key factors associated with long-term cessation. US Department of Veterans Affairs (VA) hospitals are challenged to find resources to implement and maintain the kind of high intensity cessation programs that have been shown to be effective in research studies. Few studies have applied the Chronic Care Model (CCM) to improve inpatient smoking cessation. Specific objectives The primary objective of this protocol is to determine the effect of a nurse-initiated intervention, which couples low-intensity inpatient counseling with sustained proactive telephone counseling, on smoking abstinence in hospitalized patients. Key secondary aims are to determine the impact of the intervention on staff nurses' attitudes toward providing smoking cessation counseling; to identify barriers and facilitators to implementation of smoking cessation guidelines in VA hospitals; and to determine the short-term cost-effectiveness of implementing the intervention. Design Pre-post study design in four VA hospitals Participants Hospitalized patients, aged 18 or older, who smoke at least one cigarette per day. Intervention The intervention will include: nurse training in delivery of bedside cessation counseling, electronic medical record tools (to streamline nursing assessment and documentation, to facilitate prescription of pharmacotherapy), computerized referral of motivated inpatients for proactive telephone counseling, and use of internal nursing facilitators to provide coaching to staff nurses practicing in non-critical care inpatient units. Outcomes The primary endpoint is seven-day point prevalence abstinence at six months following hospital admission and prolonged abstinence after a one-month grace period. To compare abstinence rates during the intervention and baseline periods, we will use random effects logistic regression models, which take the clustered nature of the data within nurses and hospitals into account. We will assess attitudes of staff nurses toward cessation counseling by questionnaire and will identify barriers and facilitators to implementation by using clinician focus groups. To determine the short-term incremental cost per quitter from the perspective of the VA health care system, we will calculate cessation-related costs incurred during the initial hospitalization and six-month follow-up period. Trial number NCT00816036http://deepblue.lib.umich.edu/bitstream/2027.42/112349/1/13012_2009_Article_190.pd

    Optogenetic acidification of synaptic vesicles and lysosomes

    Get PDF
    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes

    Lysyl hydroxylase 3 localizes to epidermal basement membrane and Is reduced in patients with Recessive Dystrophic Epidermolysis Bullosa

    Get PDF
    Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention

    Enhanced Fear Expression in a Psychopathological Mouse Model of Trait Anxiety: Pharmacological Interventions

    Get PDF
    The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB), or normal (NAB) anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i) for identifying biological factors underlying misguided conditioned fear responses and (ii) for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias

    Space Telescope and Optical Reverberation Mapping Project. IX. Velocity–Delay Maps for Broad Emission Lines in NGC 5548

    Get PDF
    In this contribution, we achieve the primary goal of the active galactic nucleus (AGN) STORM campaign by recovering velocity–delay maps for the prominent broad emission lines (Lyα, C iv, He ii, and Hβ) in the spectrum of NGC 5548. These are the most detailed velocity–delay maps ever obtained for an AGN, providing unprecedented information on the geometry, ionization structure, and kinematics of the broad-line region. Virial envelopes enclosing the emission-line responses show that the reverberating gas is bound to the black hole. A stratified ionization structure is evident. The He ii response inside 5–10 lt-day has a broad single-peaked velocity profile. The Lyα, C iv, and Hβ responses extend from inside 2 to outside 20 lt-day, with double peaks at ±2500 km s−1 in the 10–20 lt-day delay range. An incomplete ellipse in the velocity–delay plane is evident in Hβ. We interpret the maps in terms of a Keplerian disk with a well-defined outer rim at R = 20 lt-day. The far-side response is weaker than that from the near side. The line-center delay τ=(R/c)(1sini)5\tau =(R/c)(1-\sin i)\approx 5 days gives the inclination i ≈ 45°. The inferred black hole mass is MBH ≈ 7 × 107 M⊙. In addition to reverberations, the fit residuals confirm that emission-line fluxes are depressed during the "BLR Holiday" identified in previous work. Moreover, a helical "Barber-Pole" pattern, with stripes moving from red to blue across the C iv and Lyα line profiles, suggests azimuthal structure rotating with a 2 yr period that may represent precession or orbital motion of inner-disk structures casting shadows on the emission-line region farther out
    corecore