11 research outputs found

    Materiality, health informatics and the limits of knowledge production

    Get PDF
    © IFIP International Federation for Information Processing 2014 Contemporary societies increasingly rely on complex and sophisticated information systems for a wide variety of tasks and, ultimately, knowledge about the world in which we live. Those systems are central to the kinds of problems our systems and sub-systems face such as health and medical diagnosis, treatment and care. While health information systems represent a continuously expanding field of knowledge production, we suggest that they carry forward significant limitations, particularly in their claims to represent human beings as living creatures and in their capacity to critically reflect on the social, cultural and political origins of many forms of data ‘representation’. In this paper we take these ideas and explore them in relation to the way we see healthcare information systems currently functioning. We offer some examples from our own experience in healthcare settings to illustrate how unexamined ideas about individuals, groups and social categories of people continue to influence health information systems and practices as well as their resulting knowledge production. We suggest some ideas for better understanding how and why this still happens and look to a future where the reflexivity of healthcare administration, the healthcare professions and the information sciences might better engage with these issues. There is no denying the role of health informatics in contemporary healthcare systems but their capacity to represent people in those datascapes has a long way to go if the categories they use to describe and analyse human beings are to produce meaningful knowledge about the social world and not simply to replicate past ideologies of those same categories

    A Diagnostic System Using Broad Categories With Clinicaly Relevant Specifiers: Lessons for ICD-10

    No full text
    A diagnostic system for ICD-11 is proposed which commences with broad reorganization and simplification of the current categories and the use of clinically relevant specifiers. Such changes have implications for the positioning of diagnostic groups and lead to a range of possibilities for improving terminology and the juxtaposition of individual conditions. The development of ICD-11 provides the first opportunity in almost two decades to improve the validity and reliability of the international classification system. Widespread change in broad categories and criteria cannot be justified by research that has emerged since the last revision. It would also be disruptive to clinical practice and might devalue past research work. However, the case for reorganization of the categories is stronger and has recently been made by an eminent international group of researchers (Andrews et al., 2009). A simpler, interlinked diagnostic system is proposed here which is likely to have fewer categories than its predecessor. There are major advantages of such a system for clinical practice and research and it could also produce much needed simplification for primary care (Gask et al., 2008) and the developing world (Wig, 1990; Kohn et al., 2004)

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore