88 research outputs found

    The transition between Neumann and Dirichlet boundary conditions in isotropic elastic plates

    Get PDF
    The official published version can be obtained from the link below - Copyright @ 2010 by SAGE PublicationsThe transition from Neumann (traction-free) to Dirichlet (fixed-face) boundary conditions is investigated in respect of wave propagation in a linear isotropic elastic layer. Attention is focused on the implications of such a transition on the dispersion curve branches within the long-wave region. The formation of low-frequency band gap that is expected to exist in layers with Dirichlet boundary condition is shown to be caused by different mechanisms in anti-symmetric and symmetric cases. Certain implications to short-wave propagation in the layer are also investigated. The study includes both a numerical investigation and a multi-parameter asymptotic analysis.The work of the first author was supported by an INTAS grant, YSF/06-10000014-5790

    Resonant Magnetic Vortices

    Full text link
    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm-type. Regge poles of the SS-matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a new kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.Comment: 6 pages, 7 figure

    Kirchhoff's Loop Law and the maximum entropy production principle

    Full text link
    In contrast to the standard derivation of Kirchhoff's loop law, which invokes electric potential, we show, for the linear planar electric network in a stationary state at the fixed temperature,that loop law can be derived from the maximum entropy production principle. This means that the currents in network branches are distributed in such a way as to achieve the state of maximum entropy production.Comment: revtex4, 5 pages, 2 figure

    Wave scattering from self-affine surfaces

    Full text link
    Electromagnetic wave scattering from a perfectly reflecting self-affine surface is considered. Within the framework of the Kirchhoff approximation, we show that the scattering cross section can be exactly written as a function of the scattering angle via a centered symmetric Levy distribution for general roughness amplitude, Hurst exponent and wavelength of the incident wave. The amplitude of the specular peak, its width and its position are discussed as well as the power law decrease (with scattering angle) of the scattering cross section.Comment: RevTeX, 4 pages including 2 figures. Submitted Phys. Rev. Let

    On the Propagation of Slip Fronts at Frictional Interfaces

    Get PDF
    The dynamic initiation of sliding at planar interfaces between deformable and rigid solids is studied with particular focus on the speed of the slip front. Recent experimental results showed a close relation between this speed and the local ratio of shear to normal stress measured before slip occurs (static stress ratio). Using a two-dimensional finite element model, we demonstrate, however, that fronts propagating in different directions do not have the same dynamics under similar stress conditions. A lack of correlation is also observed between accelerating and decelerating slip fronts. These effects cannot be entirely associated with static local stresses but call for a dynamic description. Considering a dynamic stress ratio (measured in front of the slip tip) instead of a static one reduces the above-mentioned inconsistencies. However, the effects of the direction and acceleration are still present. To overcome this we propose an energetic criterion that uniquely associates, independently on the direction of propagation and its acceleration, the slip front velocity with the relative rise of the energy density at the slip tip.Comment: 15 pages, 6 figure

    The Basics of Water Waves Theory for Analogue Gravity

    Full text link
    This chapter gives an introduction to the connection between the physics of water waves and analogue gravity. Only a basic knowledge of fluid mechanics is assumed as a prerequisite.Comment: 36 pages. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 201

    Control of Rayleigh-Taylor instability by vertical vibration in large aspect ratio containers

    Get PDF
    We consider a horizontal heavy fluid layer supported by a light, immiscible one in a wide (as compared to depth) container, which is vertically vibrated intending to counterbalance the Rayleigh-Taylor instability of the flat, rigid-body vibrating state. In the simplest case when the density and viscosity of the lighter fluid are small compared to their counterparts in the heavier fluid, we apply a long wave, weakly nonlinear analysis that yields a generalized Cahn-Hilliard equation for the evolution of the fluid interface. This equation shows that the stabilizing effect of vibration is like that of surface tension, and is used to analyze the linear stability of the flat state, the local bifurcation at the instability threshold and some global existence and stability properties concerning the steady states without dry spots. The analysis is extended to two cases of practical interest. Namely, (a) the viscosity of one of the fluids is much smaller than that of the other one, and (b) the densities and viscosities of both fluids are quite close to each other
    • …
    corecore