2,168 research outputs found

    ARPES Study of X-Point Band Overlaps in LaB6_6 and SmB6_6 - Contrast to SrB6_6 and EuB6_6

    Full text link
    In contrast to our recent finding of an X-point band gap in divalent hexaborides, we report here that angle resolved photoemission spectroscopy (ARPES) data shows that the gap is absent for trivalent LaB6_6 and is absent or nearly so for mixed valent SmB6_6. This finding demonstrates a nontrivial evolution of the band structure from divalent to trivalent hexaborides.Comment: submitted to SCES '0

    Discrimination of soil phases by dual energy x-ray tomography

    Get PDF
    Numerous soil ecological functions are influenced by soil structure through its impact on spatial and temporal distributions of soil particles, water, and air within the soil profile. The nondestructive technique of x‐ray computed tomography (CT) was used for studying soil structure. X‐ray attenuation determined for two energy levels (80 kV and 120 kV) was used to calculate distributions of water, air, and solids, as well as the voxel dry bulk density for two silt loam subsoils. The spatial resolution during scanning was 0.25 mm in the horizontal and 1 mm in the vertical direction. For different voxel sizes, the weighted mean of the derived volumetric water, air, and solid contents, and the dry bulk densities agreed with the sample's phase composition and dry bulk density obtained by weighing. The use of dual energy scanning to study the heterogeneity of soil structure and the spatial distribution of water, air, and solids is discussed

    Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland

    Get PDF
    1 The arbuscular mycorrhizal (AM) fungi colonizing plants at a woodland site in North Yorkshire (UK) have been characterized from the roots of five plant species (Rubus fruticosus agg. L., Epilobium angustifolium L., Acer pseudoplatanus L., Ajuga reptans L. and Glechoma hederacea L.), and identified using small-subunit rRNA (SSUrRNA) gene amplification and sequencing. 2 Interactions between five plant species from the site and four co-occurring glomalean fungi were investigated in artificial one-to-one AM symbioses. Three of the fungi were isolated from the site; the fourth was a culture genetically similar to a taxon found at the site. Phosphorus uptake and growth responses were compared with non-mycorrhizal controls. 3 Individual fungi colonized each plant with different spatial distribution and intensity. Some did not colonize at all, indicating incompatibility under the conditions used in the experiments. 4 Glomus hoi consistently occupied a large proportion of root systems and outperformed the other fungi, improving P uptake and enhancing the growth of four out of the five plant species. Only G. hoi colonized and increased P uptake in Acer pseudoplatanus, the host plant with which it associates almost exclusively under field conditions. Colonization of all plant species by Scutellospora dipurpurescens was sparse, and beneficial to only one of the host plants (Teucrium scorodonia). Archaeospora trappei and Glomus sp. UY1225 had variable effects on the host plants, conferring a range of P uptake and growth benefits on Lysimachia nummularia and T. scorodonia, increasing P uptake whilst not affecting biomass in Ajuga reptans and Glechoma hederacea, and failing to form mycorrhizas with A. pseudoplatanus. 5 These experimental mycorrhizas show that root colonization, symbiont compatibility and plant performance vary with each fungus-plant combination, even when the plants and fungi naturally co-exist. 6 We provide evidence of physical and functional selectivity in AM. The small number of described AM fungal species (154) has been ascribed to their supposed lack of host specificity, but if the selectivity we have observed is the general rule, then we may predict that many more, probably hard-to-culture glomalean species await discovery, or that members of species as currently perceived may be physiologically or functionally distinct

    Thermal image processing for real-time noncontact respiration rate monitoring

    Get PDF
    A real-time thermal imaging based, non-contact respiration rate monitoring method was developed. It measured the respiration related skin surface temperature changes under the tip of the nose. Facial tracking was required as head movements caused the face to appear in different locations in the recorded images over time. The algorithm detected the tip of the nose and then, a region just under it was selected. The pixel values in this region in successive images were processed to determine respiration rate. The segmentation method, used as part of the facial tracking, was evaluated on 55,000 thermal images recorded from 14 subjects with different extent of head movements. It separated the face from image background in all images. However, in 11.7% of the images, a section of the neck was also included, but this did not cause an error in determining respiration rate. The method was further evaluated on 15 adults, against two contact respiration rate monitoring methods that tracked thoracic and abdominal movements. The three methods gave close respiration rates in 12 subjects but in 3 subjects, where there were very large head movements, the respiration rates did not match

    Mission Concept for the Single Aperture Far-Infrared (SAFIR) Observatory

    Full text link
    The Single Aperture Far-InfraRed (SAFIR) Observatory's science goals are driven by the fact that the earliest stages of almost all phenomena in the universe are shrouded in absorption by and emission from cool dust and gas that emits strongly in the far-infrared and submillimeter. Over the past several years, there has been an increasing recognition of the critical importance of this spectral region to addressing fundamental astrophysical problems, ranging from cosmological questions to understanding how our own Solar System came into being. The development of large, far-infrared telescopes in space has become more feasible with the combination of developments for the James Webb Space Telescope and of enabling breakthroughs in detector technology. We have developed a preliminary but comprehensive mission concept for SAFIR, as a 10 m-class far-infrared and submillimeter observatory that would begin development later in this decade to meet the needs outlined above. Its operating temperature (<4K) and instrument complement would be optimized to reach the natural sky confusion limit in the far-infrared with diffraction-limited peformance down to at least 40 microns. This would provide a point source sensitivity improvement of several orders of magnitude over that of Spitzer or Herschel, with finer angular resolution, enabling imaging and spectroscopic studies of individual galaxies in the early universe. We have considered many aspects of the SAFIR mission, including the telescope technology, detector needs and technologies, cooling method and required technology developments, attitude and pointing, power systems, launch vehicle, and mission operations. The most challenging requirements for this mission are operating temperature and aperture size of the telescope, and the development of detector arrays.Comment: 36 page
    corecore