1,804 research outputs found

    The monoid of queue actions

    Full text link
    We investigate the monoid of transformations that are induced by sequences of writing to and reading from a queue storage. We describe this monoid by means of a confluent and terminating semi-Thue system and study some of its basic algebraic properties, e.g., conjugacy. Moreover, we show that while several properties concerning its rational subsets are undecidable, their uniform membership problem is NL-complete. Furthermore, we present an algebraic characterization of this monoid's recognizable subsets. Finally, we prove that it is not Thurston-automatic

    Constraints on the evolution of Taranaki Fault from thermochronology and basin analysis: Implications for the Taranaki Fault play

    Get PDF
    Taranaki Fault is the major structure defining the eastern margin of Taranaki Basin and marks the juxtaposition of basement with the Late Cretaceous-Paleogene succession in the basin. Although the timing of the basement over-thrusting on Taranaki Fault and subsequent marine onlap on to the basement block are well constrained as having occurred during the Early Miocene, the age of formation of this major structure, its character, displacement history and associated regional vertical movement during the Late Cretaceous- Recent are otherwise poorly known. Here we have applied (i) apatite fission track thermochronology to Mesozoic basement encountered in exploration holes and in outcrop to constrain the amount and timing of Late Cretaceous-Eocene exhumation of the eastern side of the fault, (ii) basin analysis of the Oligocene and Miocene succession east of the fault to establish the late-Early Miocene - Early Pliocene subsidence history, and (iii), regional porosity-bulk density trends in Neogene mudstone to establish the late uplift and tilting of eastern Taranaki Basin margin, which may have been associated with the main period of charge of the underlying Taranaki Fault play. We make the following conclusions that may be useful in assessing the viability of the Taranaki Fault play. (1) Mid-Cretaceous Taniwha Formation, intersected in Te Ranga-1 was formerly extensive across the western half of the Kawhia Syncline between Port Waikato and Awakino. (2) Taranaki Fault first formed as a normalfault during the Late Cretaceous around 85±10 Ma, and formed the eastern boundary of the Taranaki Rift-Transform basin. (3) Manganui Fault, located onshore north of Awakino, formed as a steeply east dipping reverse fault and accommodated about four km of displacement during the mid-Cretaceous. (4) Uplift and erosion, involving inversion of Early Oligocene deposits, occurred along the Herangi High during the Late Oligocene. This may have been associated with initial reverse movement on Taranaki Fault. (5) During the Early Miocene (Otaian Stage) the Taranaki and Manganui Faults accommodated the westward transport of Murihiku basement into the eastern margin of Taranaki Basin, but the amount of topography generated over the Herangi High can only have been a few hundred metres in elevation. (6) The Altonian (19-16 Ma) marked the start of the collapse of the eastern margin of Taranaki Basin that lead during the Middle Miocene to the eastward retrogradation of the continental margin wedge into the King Country region. During the Late Miocene, from about 11 Ma, a thick shelf-slope continental margin wedge prograded northward into the King Country region and infilled it (Mt Messenger, Urenui, Kiore and Matemateaonga Formations). (7) During the Pliocene and Pleistocene the whole of central New Zealand, including the eastern margin of Taranaki Basin, became involved in long wavelength up-doming with 1-2 km erosion of much of the Neogene succession in the King Country region. This regionally elevated the Taranaki Fault play into which hydrocarbons may have migrated from the Northern Graben region

    Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.

    Get PDF
    Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections. The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope. Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps

    Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.

    Get PDF
    Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections. The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope. Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps

    Neogene stratigraphic architecture and tectonic evolution of Wanganui, King Country, and eastern Taranaki Basins, New Zealand

    Get PDF
    Analysis of the stratigraphic architecture of the fills of Wanganui, King Country, and eastern Taranaki Basins reveals the occurrence of five 2nd order Late Paleocene and Neogene sequences of tectonic origin. The oldest is the late Eocene-Oligocene Te Kuiti Sequence, followed by the early-early Miocene (Otaian) Mahoenui Sequence, followed by the late-early Miocene (Altonian) Mokau Sequence, all three in King Country Basin. The fourth is the middle Miocene to early Pliocene Whangamomona Sequence, and the fifth is the middle Pliocene-Pleistocene Rangitikei Sequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th) with a eustatic origin occur particularly within the Whangamomona and Rangitikei Sequences, particularly those of 6th order with 41 000 yr periodicity

    Water and Salt Movement in Unsaturated Frozen Soil: Principles and Field Observations

    Get PDF
    Soil temperatures, electrical conductivities, and water redistribution were measured at four field sites during a 30-day period in which the soil was never completely thawed. The soil on each site was a silt loam with varying aspects and vegetation covers. Both upward and downward flow of water and solutes were observed. Assuming that liquid water flow in frozen soil is analogous to unsaturated liquid flow in unfrozen soil, led to a simple equation that in general agreed with the field observations. The equation requires knowledge of the soil temperatures, the solute concentrations, and two constants that characterize the soil's water release curve and saturated hydraulic conductivity. Infiltration and frost heaving are discussed with respect to this simple theory. Water in frozen soil flows from high to low temperatures and from high to low salt concentrations. Consequently, solutes in even very low salt soils are important in decreasing frost heave and increasing infiltration. The liquid flow is so closely coupled with temperature that heat flow must be considered simultaneously in any comprehensive analysis. This coupling, as expressed in the simple liquid flow equation, accounts for the effect of soil water content on frost heave rates and the effects of temperature on maximum heaving pressures

    Is the Soil Frozen, or Not? An Algorithm Using Weather Records

    Get PDF
    Frozen soil water is important in hydrologic events because it reduces water infiltration. The presence of soil ice can be predicted reasonably well from detailed knowledge of the soil and microclimatic variables, but this type of information is generally unavailable. Consequently, the purpose of this study was to start with fundamental relations and see how well frozen soil conditions could be identified from daily weather station records of maximum-minimum temperatures, solar radiation, and snowfall. Two relations were developed, one based on the soil-atmosphere energy budget and the other on the heat flux across the soil surface layer. Conceptually, the two equations may be used together to give daily snowmelt as well as soil thawing and freezing rates, but in practice, the snowmen prediction is probably not yet accurate enough for most practical applications. The simpler equation, describing the heat flux in the soil surface, does not require solar radiation input, yet it gave fair predictions of frozen soil on five diverse sites studied in the Palouse region of eastern Washington. Both approaches require only a single constant that accounts for individual site conditions such as slope, aspect, cover, and soil properties

    Tracer diffusion in granular shear flows

    Full text link
    Tracer diffusion in a granular gas in simple shear flow is analyzed. The analysis is made from a perturbation solution of the Boltzmann kinetic equation through first order in the gradient of the mole fraction of tracer particles. The reference state (zeroth-order approximation) corresponds to a Sonine solution of the Boltzmann equation, which holds for arbitrary values of the restitution coefficients. Due to the anisotropy induced in the system by the shear flow, the mass flux defines a diffusion tensor DijD_{ij} instead of a scalar diffusion coefficient. The elements of this tensor are given in terms of the restitution coefficients and mass and size ratios. The dependence of the diffusion tensor on the parameters of the problem is illustrated in the three-dimensional case. The results show that the influence of dissipation on the elements DijD_{ij} is in general quite important, even for moderate values of the restitution coefficients. In the case of self-diffusion (mechanically equivalent particles), the trends observed in recent molecular dynamics simulations are similar to those obtained here from the Boltzmann kinetic theory.Comment: 5 figure

    Integrin activation - the importance of a positive feedback

    Full text link
    Integrins mediate cell adhesion and are essential receptors for the development and functioning of multicellular organisms. Integrin activation is known to require both ligand and talin binding and to correlate with cluster formation but the activation mechanism and precise roles of these processes are not yet resolved. Here mathematical modeling, with known experimental parameters, is used to show that the binding of a stabilizing factor, such as talin, is alone insufficient to enable ligand-dependent integrin activation for all observed conditions; an additional positive feedback is required.Comment: in press in Bulletin of Mathematical Biolog

    Action research in physical education: focusing beyond myself through cooperative learning

    Get PDF
    This paper reports on the pedagogical changes that I experienced as a teacher engaged in an action research project in which I designed and implemented an indirect, developmentally appropriate and child‐centred approach to my teaching. There have been repeated calls to expunge – or at least rationalise – the use of traditional, teacher‐led practice in physical education. Yet despite the advocacy of many leading academics there is little evidence that such a change of approach is occurring. In my role as teacher‐as‐researcher I sought to implement a new pedagogical approach, in the form of cooperative learning, and bring about a positive change in the form of enhanced pupil learning. Data collection included a reflective journal, post‐teaching reflective analysis, pupil questionnaires, student interviews, document analysis, and non‐participant observations. The research team analysed the data using inductive analysis and constant comparison. Six themes emerged from the data: teaching and learning, reflections on cooperation, performance, time, teacher change, and social interaction. The paper argues that cooperative learning allowed me to place social and academic learning goals on an even footing, which in turn placed a focus on pupils’ understanding and improvement of skills in athletics alongside their interpersonal development
    corecore