1,301 research outputs found

    Two-dimensional quantum-corrected black hole in a finite size cavity

    Full text link
    We consider the gravitation-dilaton theory (not necessarily exactly solvable), whose potentials represent a generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity the field is in the Boulware state. We calculate quantum corrections to the Hawking temperature THT_{H}, with the contribution from the boundary taken into account. Vacuum polarization outside the shell tend to cool the system. We find that, for the shell to be in the thermal equilibrium, it cannot be placed too close to the horizon. The quantum corrections to the mass due to vacuum polarization vanish in spite of non-zero quantum stresses. We discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays a crucial role in some theories (e.g., CGHS), where it enables to define the stable canonical ensemble, whereas consideration in an infinite space would predict instability.Comment: 21 pages. In v.2 misprints corrected. To appear in Phys. Rev.

    Hidden symmetries for thermodynamics and emergence of relativity

    Full text link
    Erik Verlinde recently proposed an idea about the thermodynamic origin of gravity. Though this is a beautiful idea which may resolve many long standing problems in the theories of gravity, it also raises many other problems. In this article I will comment on some of the problems of Verlinde's proposal with special emphasis on the thermodynamical origin of the principle of relativity. It is found that there is a large group of hidden symmetries of thermodynamics which contains the Poincare group of the spacetime for which space is emergent. This explains the thermodynamic origin of the principle of relativity.Comment: V1: 4 pages, comments/criticisms welcomed; V2: references added; V3: typos and minor corrections? V4? substantial changes in Section 3 and other parts mad

    Existence of weak solutions for the generalized Navier-Stokes equations with damping

    Get PDF
    In this work we consider the generalized Navier-Stokes equations with the presence of a damping term in the momentum equation. The problem studied here derives from the set of equations which govern isothermal flows of incompressible and homogeneous non-Newtonian fluids. For the generalized Navier-Stokes problem with damping, we prove the existence of weak solutions by using regularization techniques, the theory of monotone operators and compactness arguments together with the local decomposition of the pressure and the Lipschitz-truncation method. The existence result proved here holds for any and any sigma > 1, where q is the exponent of the diffusion term and sigma is the exponent which characterizes the damping term.MCTES, Portugal [SFRH/BSAB/1058/2010]; FCT, Portugal [PTDC/MAT/110613/2010]info:eu-repo/semantics/publishedVersio

    Quantum corrections to the entropy of charged rotating black holes

    Full text link
    Hawking radiation from a black hole can be viewed as quantum tunneling of particles through the event horizon. Using this approach we provide a general framework for studying corrections to the entropy of black holes beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the first law thermodynamics, we study charged rotating black holes and explicitly work out the corrections to entropy and horizon area for the Kerr-Newman and charged rotating BTZ black holes. It is shown that the results for other geometries like the Schwarzschild, Reissner-Nordstr\"{o}m and anti-de Sitter Schwarzschild spacetimes follow easily

    Maximizing Cooperative Diversity Energy Gain for Wireless Networks

    Full text link

    Throughput Analysis of TCP-Friendly Rate Control in Mobile Hotspots

    Full text link

    Phase transitions in geometrothermodynamics

    Full text link
    Using the formalism of geometrothermodynamics, we investigate the geometric properties of the equilibrium manifold for diverse thermodynamic systems. Starting from Legendre invariant metrics of the phase manifold, we derive thermodynamic metrics for the equilibrium manifold whose curvature becomes singular at those points where phase transitions of first and second order occur. We conclude that the thermodynamic curvature of the equilibrium manifold, as defined in geometrothermodynamics, can be used as a measure of thermodynamic interaction in diverse systems with two and three thermodynamic degrees of freedom

    Semiblind Channel Estimation for Pulse-Based Ultra-Wideband Wireless Communication Systems

    Full text link

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    Phase transitions for the Lifshitz black holes

    Full text link
    We study possibility of phase transitions between Lifshitz black holes and other configurations by using free energies explicitly. A phase transition between Lifshitz soliton and Lifshitz black hole might not occur in three dimensions. We find that a phase transition between Lifshitz and BTZ black holes unlikely occurs because they have different asymptotes. Similarly, we point out that any phase transition between Lifshitz and black branes unlikely occurs in four dimensions since they have different asymptotes. This is consistent with a necessary condition for taking a phase transition in the gravitational system, which requires the same asymptote.Comment: 19 pages, 7 figures, a revised version to appear in EPJ
    • 

    corecore