85 research outputs found

    Photon energy upshift by gravitational waves from a compact source

    Get PDF
    We consider the propagation of light from an isolated source that also emits gravitational waves. The eikonal approach is employed to determine the transfer of energy from the gravitational to electromagnetic radiation. A mechanism is found in which a photon "surfs" on the gravitational wave. For black hole events, a significant upshift of photon energy can occur according to a power-law buildup over the radial distance. This surprising effect may be responsible for some of the unexplained high energy phenomena in the cosmos involving gamma rays or other astro-particles

    The influence of temporal coherence on the dynamical Casimir effect

    Full text link
    We study the dynamical Casimir effect in the presence of a finite coherence time, which is associated with a finite quality factor of the optical cavity. We use the time refraction model, where a fixed cavity with a modulated optical medium, replaces the empty cavity with a vibrating mirror. Temporal coherence is described with the help of cavity quasi-mode operators. Asymptotic expressions for the number of photon pairs generated from vacuum are derived.Comment: 8 pages, 1 figur

    Vacuum effects in a vibrating cavity: time refraction, dynamical Casimir effect, and effective Unruh acceleration

    Full text link
    Two different quantum processes are considered in a perturbed vacuum cavity: time refraction and dynamical Casimir effect. They are shown to be physically equivalent, and are predicted to be unstable, leading to an exponential growth in the number of photons created in the cavity. The concept of an effective Unruh acceleration for these processes is also introduced, in order to make a comparison in terms of radiation efficiency, with the Unruh radiation associated with an accelerated frame in unbounded vacuum.Comment: 5 pages, version to appear in Physics Letters

    Photon acceleration in vacuum

    Get PDF
    A new process associated with the nonlinear optical properties of the electromagnetic vacuum, as predicted by quantum electrodynamics, is described. This can be called photon acceleration in vacuum, and corresponds to the frequency shift that takes place when a given test photon interacts with an intense beam of background radiation.Comment: 10 pages, 2 figures, version to appear in Phys. Lett.

    Particle acceleration by twisted laser beams

    Get PDF
    We consider particle acceleration in plasmas, using twisted laser beams, or beams with orbital angular momentum. We discuss different acceleration processes using two LG laser modes, which include donut wakefield, beat-wave and self-torque acceleration, and compare the respective properties. We show that a self-torque configuration is able to produce azimuthal acceleration and can therefore be considered as an alternative method to produce helical electron beams

    Axions and their Relatives

    Get PDF
    A review of the status of axions and axion-like particles is given. Special attention is devoted to the recent results of the PVLAS collaboration, which are in conflict with the CAST data and with the astrophysical constraints. Solutions to the puzzle and the implications for new physics are discussed. The question of axion-like particles being dark matter is also addressed.Comment: Updated version of an invited talk at the Axion Training (CERN, December 2005). To appear as a Lecture Notes in Physics (Springer-Verlag), edited by B. Beltran, M. Kuster and G. Raffel

    Nonlinear coupled Alfv\'{e}n and gravitational waves

    Full text link
    In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field, and the coupling to compressional Alfv\'{e}n waves. The gravitational waves are considered in the high frequency limit and the plasma is modelled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schr\"{o}dinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected.Comment: 20 pages, revtex4, accepted in PR

    Quantum Vacuum Experiments Using High Intensity Lasers

    Full text link
    The quantum vacuum constitutes a fascinating medium of study, in particular since near-future laser facilities will be able to probe the nonlinear nature of this vacuum. There has been a large number of proposed tests of the low-energy, high intensity regime of quantum electrodynamics (QED) where the nonlinear aspects of the electromagnetic vacuum comes into play, and we will here give a short description of some of these. Such studies can shed light, not only on the validity of QED, but also on certain aspects of nonperturbative effects, and thus also give insights for quantum field theories in general.Comment: 9 pages, 8 figur

    QCD Corrections to QED Vacuum Polarization

    Full text link
    We compute QCD corrections to QED calculations for vacuum polarization in background magnetic fields. Formally, the diagram for virtual eeˉe\bar{e} loops is identical to the one for virtual qqˉq\bar{q} loops. However due to confinement, or to the growth of αs\alpha_s as p2p^2 decreases, a direct calculation of the diagram is not allowed. At large p2p^2 we consider the virtual qqˉq\bar{q} diagram, in the intermediate region we discuss the role of the contribution of quark condensates \left and at the low-energy limit we consider the π0\pi^0, as well as charged pion π+π\pi^+\pi^- loops. Although these effects seem to be out of the measurement accuracy of photon-photon laboratory experiments they may be relevant for γ\gamma-ray burst propagation. In particular, for emissions from the center of the galaxy (8.5 kpc), we show that the mixing between the neutral pseudo-scalar pion π0\pi_0 and photons renders a deviation from the power-law spectrum in the TeVTeV range. As for scalar quark condensates \left and virtual qqˉq\bar{q} loops are relevant only for very high radiation density 300MeV/fm3\sim 300 MeV/fm^3 and very strong magnetic fields of order 1014T\sim 10^{14} T.Comment: 15 pages, 4 figures; Final versio

    Fluctuations, dissipation and the dynamical Casimir effect

    Full text link
    Vacuum fluctuations provide a fundamental source of dissipation for systems coupled to quantum fields by radiation pressure. In the dynamical Casimir effect, accelerating neutral bodies in free space give rise to the emission of real photons while experiencing a damping force which plays the role of a radiation reaction force. Analog models where non-stationary conditions for the electromagnetic field simulate the presence of moving plates are currently under experimental investigation. A dissipative force might also appear in the case of uniform relative motion between two bodies, thus leading to a new kind of friction mechanism without mechanical contact. In this paper, we review recent advances on the dynamical Casimir and non-contact friction effects, highlighting their common physical origin.Comment: 39 pages, 4 figures. Review paper to appear in Lecture Notes in Physics, Volume on Casimir Physics, edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Rosa. Minor changes, a reference adde
    corecore