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We consider particle acceleration in plasmas, using twisted laser beams, or

beams with orbital angular momentum. We discuss different acceleration

processes using two LG laser modes, which include donut wakefield, beat-

wave and self-torque acceleration, and compare the respective properties. We

show that a self-torque configuration is able to produce azimuthal acceleration

and can therefore be considered as an alternative method to produce helical

electron beams.
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1 Introduction

Particle acceleration by laser-plasma interactions is a dominant subject in plasma

physics, which attracted the attention of several researchers over the last few decades (see

the review papers [1, 2]). In this vast area of research, different acceleration schemes were

explored, among them the beat-wave and the wakefield acceleration. Here, these two

concepts will be compared using twisted laser pulses as the drivers of the plasma

acceleration process. Beat-wave acceleration assumes the use of two long laser beams,

with durations much larger than the electron plasma period and a frequency difference

equal to the electron plasma frequency [3, 4]. This concept was the first to attract the

attention of the experimentalists, and led to the first evidence of plasma acceleration [5].

In contrast, the wakefield concept relies on the use of more intense and shorter laser

pulses, with durations smaller than the electron plasma period [6]. This acceleration

scheme led to impressive experimental results in the recent years and can be seen as a

precursor to future high-energy accelerators [7, 8].

In recent years, a new variant of wakefield acceleration was proposed, making use of

twisted laser pulses as drivers of plasma waves carrying a finite amount of orbital angular

momentum [12, 13]. These twisted laser pulses can be described by Laguerre-Gauss (LG)

modes [10, 11], and are able to excite donut shaped electron plasma wakes [12], in a

configuration that seems adequate to accelerate electron beams with a hollow cylindrical

profile [13]. Furthermore, efficient acceleration of positrons also seems possible. If, instead

of a single mode, two or more LG laser modes are used, it is then possible to excite helical

plasma perturbations and to accelerate helical electron beams [14]. This new laser driver is

sometimes called a light spring.

Twisted plasma waves were introduced in plasma physics recently [9]. They can be

understood as a natural extension of twisted photons, previously considered in optics [10,
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11], because plasmons correspond to electrostatic photons, or in

other words, to photons in a state of zero spin. In a sense, they

generalize the concept of twisted photons to include all the three

available spin states (s = 0, ±1), given that the s = ±1 spin states

correspond to circularly polarized transverse photons, and zero

spin state s = 0 to plasmons. They can only exist in media with

free electron populations, such as plasmas, semiconductors and

metals.

Here, we return to the case of wakefields generated by two-

mode laser pulses. We show that this simple laser driver can

excite at least three types of wakes, which can be called donut

wakes, self-torque and light springs. In particular, we show that

self-torque wakes can lead to helical acceleration, similar to that

observed in light-springs. We also show that, for long pulses, the

light-spring case can be seen as a twisted version of the beat-wave

acceleration scheme. Therefore, we can observe a transition from

the beat-wave to the wakefield acceleration simply by changing

the laser pulse duration, or equivalently, by changing the plasma

frequency.

2 Basic equations

We start with the electron fluid equations describing the slow

plasma response to the laser beams. They determine the electron

density n and velocity v produced by a laser pulse, and can be

written in relativistic form as [12].

Dn

Dt
+ cn0∇ · uγ � 0, (1)

and

Du
Dt

� c∇ϕ − c

2
〈∇a2

γ 〉. (2)

where we have used the differential operator

D

Dt
≡

z

zt
+ c

γ
u · ∇( ). (3)

We also use the covariant electron velocity u = γv/c and the

relativistic factor γ � �����
1 + u2

√
. The notation 〈 〉 represents an

average over a time interval larger than the laser period, and

shorter than the electron plasma period. In the momentum Eq. 2

we have neglected the electron pressure term, which is valid for

intense pulses, when the electron quiver velocity associated with

the laser field is much larger than the electron thermal velocity.

The normalized scalar potential, ϕ, describing the slow plasma

perturbation, and vector potential a associated with the laser

field, are defined by the expressions

ϕ � eV

mc2
, a � eA

mc
, (4)

where V and A are the usual potentials, assumed in the Coulomb

gauge. The corresponding electric and magnetic fields are

determined by

E � −mc

e

za
zt

+ c∇ϕ( ), B � mc

e
∇× a( ). (5)

From the fluid Equations 1, 2, we can derive, to the lowest order,

an equation for the density perturbations ~n � n − n0 created by

the laser pulses, as

z2

zt2
+ ω2

p( )~n � c2

2
n0∇ ·〈∇a2

γa
〉. (6)

where the relativistic factor γ ≃ γa �
�����
1 + a2

√
, valid in the laser

pulse region [12], was used in the driving term. Notice that a

similar relativistic factor should appear in the term containing

the electron plasma frequency ωp � (e2n0/ϵ0m)1/2, due to the

increase of the effective electron mass. This is ignored here by

assuming that the density perturbation associated with the laser

pulse mainly occurs in the region behind the pulse, where a2 ~ 0.

For this reason, the relativistic mass corrections are only

significant for the driving force term. We now assume that

the laser pulse is described by a superposition of different

Laguerre-Gauss (LG) field modes, eventually with different

frequency components ω]. They can be represented as

a r, t( ) � ∑
]
a]F] r, θ( )exp ik] · r − iω]t( ) + c.c., (7)

where ] ≡ (p, ℓ) represent the pairs of integers representing the

different LG modes, and the corresponding mode functions

describe their transverse structure and are determined by the

well known expressions

F] r, θ( ) ≡ Fpℓ � CpℓX
|ℓ|/2L|ℓ|

p X( )exp iℓθ − X

2
( ), (8)

where Lℓp are the associated Laguerre polynomials of argument

X = r2/w2, where w ≡ w(z) is the laser beam waist, which is

allowed to evolve slowly along propagation. The normalization

constant Cpℓ is chosen to allow orthonormality, as defined by the

condition

∫∞

0
rdr∫2π

0
dθFpℓFp′ℓ′ � δpp′δℓℓ′. (9)

Occasionally, we will also use the notation F](r, θ) = F](r)e
iℓθ. Let

us now use the field Equation 7 to calculate the ponderomotive

force appearing in Eq. 6. For that purpose, we focus on the case of

two LG modes, ] = 1, 2, which is sufficient to illustrate the main

differences between the beat-wave and wakefield acceleration

schemes, and to explore different wakefield configurations, such

as the donut, self-torque and light-spring configurations. We

then have

a2 � ∑
]�1,2

aj η]( )F] r( )∣∣∣∣ ∣∣∣∣2
+ 2 a1 · ap2( )|F1 r( )||F2 r( )| cos Δkz + Δℓθ − Δωt( ), (10)

with Δk = k1 − k2, Δℓ = ℓ − ℓ′ and Δω = ω1 − ω2. We have also

used the space-time variables η] = z − v]t, where v] are the group
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velocities of the two LG modes. For very similar mode

frequencies, ω1 ~ ω2, we can use a single space-time variable

η1 ~ η2 = η.

3 Twisted wakes

In order to solve Eq. 6, we can use the decomposition of the

density perturbations ~n is LG mode components, as

~n r, t( ) � ∑
p′ℓ′

Np′ℓ′ z, t( )Fp′ℓ′ r, θ( ), (11)

Replacing this in Eq. 6, we would get an equation for each density

mode component, Npℓ. This approach was followed in [12]. An

alternative approach is to use the decomposition into the

principal components, according to

~n r, t( ) � ∑
]�1,2

N] z, t( ) F] r( )| |2 +N3 z, t( )F1 r( )F2 r( ), (12)

In this case, we can derive three independent equations for theN]

and N3, associated with the principal components of the

wakefield perturbations, as

z2

zt2
+ ω2

p( )N] � c2

2
n0

z

zz

1
γa

z

zz
a2]( ). (13)

for ] = 1, 2, and

z2

zt2
+ ω2

p( )N3 � c2

2
n0

z

zz

1
γa

z

zz
a1a

p
2 cos Δkz + Δℓθ − Δωt( )[ ].

(14)
Here, we have assumed that ∇2 ≃ z2/zz2. But the radial corrections

associated with ∇2
⊥ would not introduce relevant qualitative changes

in the wakefield solutions [12]. We now use these evolution

equations to discuss three different wakefield configurations.

3.1 Donut wakes

In this case, we only have a single LG laser mode, a ≡ a1, with

a2 = 0. To simplify the discussion we assume the weakly

relativistic case, γa ~ 1, and write

z2

zη2
+ k2p( )N] � z2

zη2
V1 η( ). (15)

and

V1 η( ) � n0
2

a1 η( )∣∣∣∣ ∣∣∣∣2, (16)

where kp =ωp/v1, η = z − v1t, and v1 = zω1/zk1 ≃ c is the laser pulse

group velocity. This can easily be integrated, leading to

N1 η( ) � δN1 η( ) − ∫η

η0

V1 η′( )sin kp η − η′( )[ ]dη′, (17)

with

δN1 η( ) � V1 η( ) − V1 η0( )cos kpη( ) − zV1

zη
( )

η0

sin kpη( ). (18)

Notice that, far away from the pulse, we can use the initial

conditions V1(η0) = 0 and (zV1/zη)η0 ≃ 0. This allows us to write

the donut wakefield solution in terms of the co-moving variable

η as

~n r, η( ) � n0
2

|a1 η( )|2 − ∫η

η0

|a1 η′( )|2 sin kp η − η′( )[ ]dη′{ } F1 r( )| |2,
(19)

where F1(r) ≡ Fpℓ(r). In this solution, the dependence on the

azimuthal variable θ vanishes, as illustrated in Figure 1, where the

absolute value of the density perturbations associated with the

different wakefield configurations are shown. This was previously

studied in [12], but here we obtain an explicit solution, and not

just a simulation result.

3.2 Self-torque

We now consider the superposition of two distinct LG laser

modes, with different values of ℓ but the same frequency. In this

case, we have Δℓ ≠ 0, and Δω = Δk = 0. We also assume that the

envelopes of the two LG modes are displaced in time. For

Gaussian pulse envelopes with the same amplitude, we can use.

aη η( ) � a0 exp − η − η]( )2
2σ2

[ ], (20)

for ] = 1, 2 and where, typically, we have (η1 − η2) ≥ σ. This means

that the two modes are able to produce two similar but nearly

non-overlapping wakes which only slightly distort the above

single mode wakefield. Instead of Eqs. 15, 16, we should now use

γa ~ 1, and write

z2

zη2
+ k2p( )~n r⊥, η( ) � z2

zη2
V r⊥, η( ). (21)

and

V r⊥, η( ) � n0
2

a1 η( )F1 r( ) + a2 η( )F2 r( )eiΔℓθ∣∣∣∣ ∣∣∣∣2, (22)

where r⊥ ≡ (r, θ). It should be noticed that, when the mode

overlapping is significant, i.e. (η1 − η2) < σ, these double donut

wakes are replaced by a moon-shaped wake. Here, we should note

that the creation of such a moon-shaped wake is only significant for

Δℓ ≪ ℓ], because the radial size of the pulse depends on the

azimuthal number ℓ. This is illustrated in Figure 2, where the

cases of (ℓ1 = 1, ℓ2 = 2) are represented. Only the first wake is

shown. We need to use a1 ≫ a2 in order to observe a significant

superposition of the twomodes. For comparison, we can see the case

of Figure 1 (b), where large azimuthal numbers are considered, (ℓ1 =
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7, ℓ2 = 8) and mode superposition is observed for equal amplitudes

a1 = a2. Transition from a donut shape to a moon-shape

configuration is clearly displayed in Figure 2, for different values

of (η1 − η2). The consequences of the resulting electron beam

structure is considered later.

3.3 Light springs

This new configuration can be achieved with a superposition

of two LG laser modes, but now using η1 = η2 and Δω ≃ ωp. Due

to this frequency difference, the resulting density perturbations

have a helical shape and can be described by Eq. 21, but where Eq.

22 is replaced by a similar, but not identical driving potential

V r⊥, η( ) � n0
2
|a η( )|2 F1 r( ) + F2 r( )exp iΔℓθ + iΔkη( )∣∣∣∣ ∣∣∣∣2, (23)

where Δk ≃ kp, and a1(η) = a2(η) was assumed. Notice that the

density perturbations will mainly be due to the cross-field

term, which oscillates at kp, and as a result, the plasma

response will be resonant. The importance of this

resonant term will be discussed later in more detail.

Notably, we stress the similarity of the light spring

configuration with the beat-wave acceleration concept.

Therefore, it establishes a bridge between two otherwise

distinct acceleration concepts.

4 Acceleration fields

Let us now consider the accelerating electrostatic fields

resulting from the above mentioned density perturbations.

They are determined by the Poisson’s equation

FIGURE 1
Wakefield configurations: (A)–Donut wake, excited by a single LG laser mode with azimuthal index l = 1; (B)–self-torque wake, produced by a
near-superposition of two LG laser modes l1 and ł2 with the same frequency ω0 ≫ ωp (self-torque configuration); (C)–Light-spring, produced by an
exact superposition of two LG modes l1 = 7 and l2 = 8, with different frequencies, ω1 ≠ ω2. At plasma resonance, ω2 − ω1 ≃ ωp this is the generalised
beat-wave configuration.
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∇ · E � − e

ϵ0
~n. (24)

The direct influence of the laser field in the acceleration process is

ignored, to simplify the discussion. This is strictly valid for short

laser driving pulses. Comparing Eq. 24 with Eq. 6, we can easily

conclude that

z2

zt2
+ ω2

p( )E � −ec
2n0
2ϵ0
〈∇a2

γa
〉. (25)

This can be solved using a similar decomposition into the

principal field components. It means that, for the axial electric

field Ez, we get

Ez r, t( ) � ∑
]
Ez] F] r( )| |2 + Ez3 F1 r( )F2 r( )| |2, (26)

where the electric field amplitudes are determined by three

wakefield equations of the form

z2

zη2
+ k2p( )~Ez] � − z

zη
ϕ] r⊥, η( ). (27)

For the first two components of Eq. 25, where ] = 1, 2, we use the

potential functions

ϕ] η( ) � en0
2ϵ0γa

a2] , (28)

while, for the third one, ] = 3, we have

ϕ η( ) � en0
2ϵ0γa

a1a
p
2 cos η + Δℓθ( ). (29)

Solutions can be derived, as for the density perturbations, and

take the form

Ez] η( ) � ∫η

η0

ϕ] η′( )cos η − η′( )dη′. (30)

The cases ] = 1, 2 take the form of the cylindrical acceleration

fields already discussed in [13]. The case ] = 3 is more interesting,

and can be written more explicitly as

Ez3 η, θ( ) ≃ − en0
2ϵ0γ0

a1a
p
2( ) ∫η

η0

cos kpη′ + Δℓθ( )cos kp η − η′( )[ ]dη′.
(31)

where we have used an averaged value of the relativistic gamma

factor inside the pulse, γ0 ~ γa. We can see that, for the case of a

self-torque pulse, the resonant part of the potential in η is absent,

and we are reduced to

Ez3 η, θ( ) ≃ − en0
2ϵ0γ0

a1a
p
2( )cos Δℓθ( )∫η

η0

cos kp η − η′( )[ ]dη′.
(32)

which, apart from the dependence in the azimuthal angle θ, is

formally identical to the fields with ] = 1, 2. In Figure 3 we

compare the axial electric field component Ez3, resulting from

short and long laser pulses. We can see that for a short pulse

duration, Δt ≤ 2π/ωp, this accelerating field is similar to that

resulting from the usual wakefield acceleration, where the

resonant effect associated with the laser mode frequency

difference Δω ≃ ωp is not relevant. In this case, the light

spring configuration studied in [14] is only marginal different

than the usual single mode wakefield, apart from the fact that it

can produce helical acceleration. But, on the other hand, the self-

torque beam, where resonant effects are absent, Δω ≃ 0, helical

acceleration becomes possible, as shown next.

FIGURE 2
Mode superposition for self-torque pulses with large amplitude differences, (a1/a2 = 10) for small quantum numbers (ℓ1 = 1, ℓ2 = 2), for (A) - large
time difference (η1 − η2 = 3); (B) - for complete superposition (η1 = η2).

Frontiers in Physics frontiersin.org05

Mendonça et al. 10.3389/fphy.2022.995379

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.995379


As for the field components in the perpendicular directions,

we can use the Panofsky-Wenzel theorem [16], valid for fast

charged particle beams. Assuming that an electron beam is

formed inside the wake, and that the theorem still applies in

these more complex geometries, we can state that

∇⊥Ez � z

zη
W⊥, W⊥ � E⊥ + c ez × B⊥( ) (33)

where B⊥ is the magnetic field associated with the electron beam.

For a dilute beam, it can be neglected. This allows us to calculate

an azimuthal field component Eθ such that

1
r

z

zθ
Ez � z

zη
Eθ + cBr( ), (34)

which leads to

Eθ + cBr � Δℓ
r
∫Ez η( )dη. (35)

The existence of an azimuthal field Eθ leads to electron

acceleration in the transverse direction, and eventually

produces helical electron beams. Notice that these helical

beams can be produced, not only by light springs as already

demonstrated [14], but also by self-torque laser pulses where

beat-wave effects are completely absent. This interesting property

is one of the main results of the present work.

5 Simulation results

Our simulations were mainly focused on the self-torque

regime, which was not considered in previous work. We

designed a set of three-dimensional simulations, using the

particle-in-cell code OSIRIS [15], that support the above

predictions for self-torque laser wakefield acceleration and the

generation of a quasi-helical electron beam. We tested three

scenarios; first, the scenario with a substantial overlap of LG

modes that generate a moon-shaped wake, second and third, the

scenarios with less overlap of the LG modes that lead to the

formation of a helical electron beam. Figure 4 shows simulation

results using a superposition of two linearly polarized (in y-

direction) LG modes with (l1 = 5, l2 = 6, p1,2 = 0), same laser

intensity a0 = 1.5 and beam waist w0 = 2 c/ωp, pulse duration of

τ = 5/ωp with temporal delay between modes of td = 1/ωp (first

simulation with strong overlap), td = 2/ωp (second simulation

with medium overlap), td = 3/ωp (third simulation with small

overlap) and ω0/ωp ≈ 14. The simulation uses a moving window

propagating at c, with dimensions 14 × 14 × 14 c/ωp, divided into

1000×500×500 cells with 2 × 1 × 1 particles per cell.

Figure 4A shows a self-torque laser consisting of LG modes

with strong overlap and corresponding asymmetric moon-

shaped wakefield. The bubble is asymmetric with a

transversely shifted maximum electron density (dark grey area

in projection), where the laser field (orange-red isosurfaces) is

maximum. The asymmetry is also found in the electrons with

pz > 2 mec (green spheres) along y-direction. In Figure 4B the

corresponding momentum space py–pz demonstrates that most

electrons accelerate with an asymmetric distribution with respect

to py, as a result of the asymmetric bubble shape. Interestingly,

with less overlap of the LG modes (Figures 4C,E), electron beams

with near-helical shape are formed. The corresponding

momentum spaces py–pz (Figures 4D,F) demonstrate growing

axial symmetry for increased displacement of the LG modes td =

2τ/5 to td = 3τ/5, but less momentum gain in laser propagation

direction pz.

The accelerating fields Ez of the three scenarios for self-

torque wakefield acceleration illustrate electrons where the

accelerating field is maximum. The maximum is shifted along

y-direction depending on the displacement of the LG-modes.

Figure 5 (a) shows a transversely shifted maximum of Ez for td =

τ/5 and electron acceleration (green dotes) in negative y-

direction. The more the LG modes are displaced [Figure 5 (b)

and (c)], the closer the maximum of Ezmoves inwards to the laser

propagation axis. The electron distribution is increasingly

symmetric and the lineout of Ez shows an increasingly

FIGURE 3
Axial wakefield field Ez3, for three different values of the laser pulse duration: (A) comparison between a short pulse with Δt = 2π/ωp, and an
intermediate pulse (Δt = 10π/ωp, in bold); (B) comparison between the short pulse case Δt = 2π/ωp with a very long pulse (Δt = 40π/ωp, in bold).
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pronounced spike at the bubble back, as expected for a cylindrical

symmetric plasma wake.

The corresponding focusing fields Ey − Bx in Figure 6

demonstrate a symmetry dependence on the displacement of

the LGmodes. Only for the scenario of increased displacement of

the LG modes with td = 3τ/5 (Figure 6 (c)) we find clear electron

focusing fields for the accelerated particles. For stronger overlap,

the asymmetries lead to a less well defined structure that will

likely increase beam divergence during acceleration. Figure 7

illustrates the azimuthal fields Eθ − Br that push the electrons out

of the plane, and confirms the existence of an azimuthal field Eθ
(Ex in z, y-plane) as predicted (see Eq. 35).

The combined longitudinal and transverse wakefield structure

has a strong influence on the early acceleration stages. This way,

FIGURE 4
OSIRIS simulations of wakefield generation with self-torque. (Upper panel) Projections show the absolute electron density in grey-scale (white
to dark grey). Orange-red colors are the laser field isosurfaces. Green spheres are the accelerated electrons with pz > 2mec. (Lower panel)
Corresponding py–pzmomentum space of forward accelerated electrons with pz > 1.0mec. [Left–(A,B)] Self-torque wakefield with strong overlap of
LG modes with td ≈ τ/5. [Middle–(C,D)] Self-torque wakefield with medium overlap of LG modes with td ≈ 2τ/5. [Right–(E,F)] Self-torque
wakefield with small overlap of LG modes with td ≈ 3τ/5. Note stretched propagation axis.

FIGURE 5
OSIRIS simulation result illustrating accelerating fields Ezwith
axial shift (in y-direction) of maximum, depending on LG mode
displacement. Transverse slice (zy-plane) of the electric field Ez in
red-blue, lineout along maximum of Ez in purple and
electrons with pz > 2 mec in hot colors depending on energy. (a)
Scenario with strong overlap of LG modes with td = τ/5, (b)
scenario with medium overlap of LG modes with td = 2τ/5, (c)
scenario with small overlap of LG modes with td = 3τ/5.

FIGURE 6
OSIRIS simulation result illustrating focusing force (Fr) with
symmetry depending on LGmode displacement, where a focusing
structure is only pronounced in case of a small overlap of the LG
modes. Transverse slice (zy-plane) of the fields Ey − Bx in red-
blue. (a) Scenario with strong overlap of LGmodes with td ≈ τ/5, (b)
scenario with medium overlap of LG modes with td ≈ 2τ/5, (c)
scenario with small overlap of LG modes with td ≈ 3τ/5.
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simulations have shown stronger electron acceleration in laser

propagation direction (z) in case of a strong overlap of LG

modes with td = τ/5. However, due to the asymmetry of the

moon-shaped wake, electrons also accelerate transversely (in y-

direction/laser polarization direction) and because their

longitudinal momentum is still below the laser group velocity

(vg/c ≈ 1 − ω2
p/2ω

2
0) exit the bubble where the accelerating field

is the smallest. With increasing displacement of the LGmodes, from

td = 2τ/5 to td = 3τ/5, the accelerating fields, focusing fields and

azimuthal fields become more symmetric. This leads to electron

acceleration close to the propagation axis and the formation of

helical electron beams.

6 Conclusion

In this paper, we have studied the three different wakefield

configurations that can be obtained with a superposition of two

LG laser modes. They correspond to the cases of donut wakes and

helical wakes, already considered in the literature and a new

configuration called self-torque. The helical wakes are associated

with the so-called light-spring laser beams.

We have compared the properties of these three

configurations and have shown that they are described by

similar expressions for the density perturbations and for the

resulting electrostatic field.We have shown that the use of twisted

laser beams, described by these LG modes, allows us to establish

the bridge between the beat-wave and the wakefield acceleration

schemes. The light spring configuration can be seen as beat-wave

when twisted laser beams are used. The resonant driving term,

oscillating at the plasma frequency is only relevant for pulses with

a duration larger than the electron plasma period, otherwise its

resonant character becomes ineffective, as shown here.

Furthermore, we were able to show that helical electron

beams can also be accelerated by self-torque wakes, where this

resonant effect is absent. On the other hand, the temporal

difference between the two LG modes with a self-torque can

be considered as an additional free parameter which can be used

to tune the shape of the helical acceleration.

We hope that this work will contribute to the physical

understanding of twisted waves in plasmas, and in particular

of the corresponding acceleration processes.
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FIGURE 7
OSIRIS simulation result illustrating azimuthal force (Fθ) that
pushes electrons out of the plane. Transverse slice (zy-plane) of
the fields Ex + By in red-blue. (a) Scenario with strong overlap of LG
modes with td ≈ τ/5, (b) scenario with medium overlap of LG
modes with td ≈ 2τ/5, (c) scenario with small overlap of LG modes
with td ≈ 3τ/5.
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