977 research outputs found
Diffusion as mixing mechanism in granular materials
We present several numerical results on granular mixtures. In particular, we
examine the efficiency of diffusion as a mixing mechanism in these systems. The
collisions are inelastic and to compensate the energy loss, we thermalize the
grains by adding a random force. Starting with a segregated system, we show
that uniform agitation (heating) leads to a uniform mixture of grains of
different sizes. We define a characteristic mixing time, , and
study theoretically and numerically its dependence on other parameters like the
density. We examine a model for bidisperse systems for which we can calculate
some physical quantities. We also examine the effect of a temperature gradient
and demonstrate the appearance of an expected segregation.Comment: 15 eps figures, include
Polarimetric Properties of Flux-Ropes and Sheared Arcades in Coronal Prominence Cavities
The coronal magnetic field is the primary driver of solar dynamic events.
Linear and circular polarization signals of certain infrared coronal emission
lines contain information about the magnetic field, and to access this
information, either a forward or an inversion method must be used. We study
three coronal magnetic configurations that are applicable to polar-crown
filament cavities by doing forward calculations to produce synthetic
polarization data. We analyze these forward data to determine the
distinguishing characteristics of each model. We conclude that it is possible
to distinguish between cylindrical flux ropes, spheromak flux ropes, and
sheared arcades using coronal polarization measurements. If one of these models
is found to be consistent with observational measurements, it will mean
positive identification of the magnetic morphology that surrounds certain
quiescent filaments, which will lead to a greater understanding of how they
form and why they erupt.Comment: 22 pages, 8 figures, Solar Physics topical issue: Coronal Magnetis
Blowup Criterion for the Compressible Flows with Vacuum States
We prove that the maximum norm of the deformation tensor of velocity
gradients controls the possible breakdown of smooth(strong) solutions for the
3-dimensional compressible Navier-Stokes equations, which will happen, for
example, if the initial density is compactly supported \cite{X1}. More
precisely, if a solution of the compressible Navier-Stokes equations is
initially regular and loses its regularity at some later time, then the loss of
regularity implies the growth without bound of the deformation tensor as the
critical time approaches. Our result is the same as Ponce's criterion for
3-dimensional incompressible Euler equations (\cite{po}). Moreover, our method
can be generalized to the full Compressible Navier-Stokes system which improve
the previous results. In addition, initial vacuum states are allowed in our
cases.Comment: 17 page
Geometric effects on T-breaking in p+ip and d+id superconductors
Superconducting order parameters that change phase around the Fermi surface
modify Josephson tunneling behavior, as in the phase-sensitive measurements
that confirmed order in the cuprates. This paper studies Josephson coupling
when the individual grains break time-reversal symmetry; the specific cases
considered are and , which may appear in SrRuO and
NaCoO(HO) respectively. -breaking order parameters
lead to frustrating phases when not all grains have the same sign of
time-reversal symmetry breaking, and the effects of these frustrating phases
depend sensitively on geometry for 2D arrays of coupled grains. These systems
can show perfect superconducting order with or without macroscopic
-breaking. The honeycomb lattice of superconducting grains has a
superconducting phase with no spontaneous breaking of but instead power-law
correlations. The superconducting transition in this case is driven by binding
of fractional vortices, and the zero-temperature criticality realizes a
generalization of Baxter's three-color model.Comment: 8 page
Processing of ultrafine-size particulate metal matrix composites by advanced shear technology
Copyright @ 2009 ASM International. This paper was published in Metallurgical & Materials Transactions A 40A(3) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Lack of efficient mixing technology to achieve a uniform distribution of fine-size reinforcement within the matrix and the high cost of producing components have hindered the widespread adaptation of particulate metal matrix composites (PMMCs) for engineering applications. A new rheo-processing method, the melt-conditioning high-pressure die-cast (MC-HPDC) process, has been developed for manufacturing near-net-shape components of high integrity. The MC-HPDC process adapts the well-established high shear dispersive mixing action of a twin-screw mechanism to the task of overcoming the cohesive force of the agglomerates under a high shear rate and high intensity of turbulence. This is followed by direct shaping of the slurry into near-net-shape components using an existing cold-chamber die-casting process. The results indicate that the MC-HPDC samples have a uniform distribution of ultrafine-sized SiC particles throughout the entire sample in the as-cast condition. Compared to those produced by conventional high-pressure die casting (HPDC), MC-HPDC samples have a much improved tensile strength and ductility.EP-SR
Deflection and Rotation of CMEs from Active Region 11158
Between the 13 and 16 of February 2011 a series of coronal mass ejections
(CMEs) erupted from multiple polarity inversion lines within active region
11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS)
flux rope model to determine the CME trajectory using both Solar Terrestrial
Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph
images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model
for nonradial CME dynamics driven by magnetic forces, to simulate the
deflection and rotation of the seven CMEs. We find good agreement between the
ForeCAT results and the reconstructed CME positions and orientations. The CME
deflections range in magnitude between 10 degrees and 30 degrees. All CMEs
deflect to the north but we find variations in the direction of the
longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with
both clockwise and counterclockwise rotations occurring. Three of the CMEs
begin with initial positions within 2 degrees of one another. These three CMEs
all deflect primarily northward, with some minor eastward deflection, and
rotate counterclockwise. Their final positions and orientations, however,
respectively differ by 20 degrees and 30 degrees. This variation in deflection
and rotation results from differences in the CME expansion and radial
propagation close to the Sun, as well as the CME mass. Ultimately, only one of
these seven CMEs yielded discernible in situ signatures near Earth, despite the
active region facing near Earth throughout the eruptions. We suggest that the
differences in the deflection and rotation of the CMEs can explain whether each
CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
4pi Models of CMEs and ICMEs
Coronal mass ejections (CMEs), which dynamically connect the solar surface to
the far reaches of interplanetary space, represent a major anifestation of
solar activity. They are not only of principal interest but also play a pivotal
role in the context of space weather predictions. The steady improvement of
both numerical methods and computational resources during recent years has
allowed for the creation of increasingly realistic models of interplanetary
CMEs (ICMEs), which can now be compared to high-quality observational data from
various space-bound missions. This review discusses existing models of CMEs,
characterizing them by scientific aim and scope, CME initiation method, and
physical effects included, thereby stressing the importance of fully 3-D
('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication
in Solar Physics (SUN-360 topical issue
- …