2,951 research outputs found

    Vertical spinal electronic device with large room temperature magnetoresistance

    Get PDF
    We report experimental transport measurements of a vertical hybrid ferromagnetic (FM)/III-V semiconductor (SC)/ferromagnetic(FM) type structure, i.e., Cr(20ML)/Co(15ML)/GaAs(50 nm, n-type)/Al/sub 0.3/Ga/sub 0.7/As(200 nm, n-type)/FeNi(30 nm). The current-voltage (I-V) characteristics reveal Schottky/tunneling type behavior in the direction of FeNi/Semiconductor/Co and observed to be dependent on external magnetic field. The magnetoresistance (MR) behavior shows a strong dependence on the measured current and field. At low fields no significant change in MR has been observed with increasing current. However, at high fields the MR initially increases with increasing current and becomes stable beyond a critical current of 10 /spl mu/A. A maximum of 12% change in the MR has been observed at room temperature, which is far larger than that of the conventional AMR effect. This property of the device could be utilized as field sensors or magnetic logic devices

    Web-based expert systems:benefits and challenges

    Get PDF
    Convergence of technologies in the Internet and the field of expert systems have offered new ways of sharing and distributing knowledge. However, there has been a general lack of research in the area of web-based expert systems (ES). This paper addresses the issues associated with the design, development, and use of web-based ES from a standpoint of the benefits and challenges of developing and using them. The original theory and concepts in conventional ES were reviewed and a knowledge engineering framework for developing them was revisited. The study considered three web-based ES: WITS-advisor - for e-business strategy development, Fish-Expert - for fish disease diagnosis, and IMIS - to promote intelligent interviews. The benefits and challenges in developing and using ES are discussed by comparing them with traditional standalone systems from development and application perspectives. © 2004 Elsevier B.V. All rights reserved

    Large Bi-2212 single crystal growth by the floating-zone technique

    Full text link
    Effects of the growth velocity on the crystal growth behavior of Bi_2Sr_2Ca_1Cu_2O_x (Bi-2212) have been studied by floating zone technique. The results show that a necessary condition for obtaining large single crystals along the c-axis is that the solid-liquid interface of a growing rod maintains a stable planar growth front. The planar liquid-solid growth interface tends to break down into a cellular interface, while the growth velocity is higher than 0.25 mm/h. Single crystals of up to 50x7.2x7 mm3 along the a-, b- and caxes have been cut in a 7.2 mm diameter rod with optimum growth conditions. Tconset is 91 K measured by magnetic properties measurement system (MPMS) for as-grown crystals. Optical polarization microscope and neutron diffraction show that the quality of the single crystals is good.Comment: 5 pages, 4 figure

    Wave profile modification (optical guiding) induced by the free electron laser interaction

    Get PDF

    Non-Markovian dynamics for an open two-level system without rotating wave approximation: Indivisibility versus backflow of information

    Full text link
    By use of the two measures presented recently, the indivisibility and the backflow of information, we study the non-Markovianity of the dynamics for a two-level system interacting with a zero-temperature structured environment without using rotating wave approximation (RWA). In the limit of weak coupling between the system and the reservoir, and by expanding the time-convolutionless (TCL) generator to the forth order with respect to the coupling strength, the time-local non-Markovian master equation for the reduced state of the system is derived. Under the secular approximation, the exact analytic solution is obtained and the sufficient and necessary conditions for the indivisibility and the backflow of information for the system dynamics are presented. In the more general case, we investigate numerically the properties of the two measures for the case of Lorentzian reservoir. Our results show the importance of the counter-rotating terms to the short-time-scale non-Markovian behavior of the system dynamics, further expose the relations between the two measures and their rationality as non-Markovian measures. Finally, the complete positivity of the dynamics of the considered system is discussed

    N-qubit entanglement via the Jy2J_y^2-type collective interaction

    Full text link
    We investigate quantum correlations of the NN-qubit states via a collective pseudo-spin interaction (Jy2\propto J_y^2) on arbitrary pure separable states for a given interval of time. Based on this dynamical generation of the NN-qubit maximal entangled states, a quantum secret sharing protocol with NN continuous classical secrets is developed.Comment: 12 pages, 3 figure

    Acceleration of the universe, vacuum metamorphosis, and the large-time asymptotic form of the heat kernel

    Full text link
    We investigate the possibility that the late acceleration observed in the rate of expansion of the universe is due to vacuum quantum effects arising in curved spacetime. The theoretical basis of the vacuum cold dark matter (VCDM), or vacuum metamorphosis, cosmological model of Parker and Raval is revisited and improved. We show, by means of a manifestly nonperturbative approach, how the infrared behavior of the propagator (related to the large-time asymptotic form of the heat kernel) of a free scalar field in curved spacetime causes the vacuum expectation value of its energy-momentum tensor to exhibit a resonance effect when the scalar curvature R of the spacetime reaches a particular value related to the mass of the field. we show that the back reaction caused by this resonance drives the universe through a transition to an accelerating expansion phase, very much in the same way as originally proposed by Parker and Raval. Our analysis includes higher derivatives that were neglected in the earlier analysis, and takes into account the possible runaway solutions that can follow from these higher-derivative terms. We find that the runaway solutions do not occur if the universe was described by the usual classical FRW solution prior to the growth of vacuum energy-density and negative pressure (i.e., vacuum metamorphosis) that causes the transition to an accelerating expansion of the universe in this theory.Comment: 33 pages, 3 figures. Submitted to Physical Review D15 (Dec 23, 2003). v2: 1 reference added. No other change

    Nonmonotonic inelastic tunneling spectra due to surface spin excitations in ferromagnetic junctions

    Get PDF
    The paper addresses inelastic spin-flip tunneling accompanied by surface spin excitations (magnons) in ferromagnetic junctions. The inelastic tunneling current is proportional to the magnon density of states which is energy-independent for the surface waves and, for this reason, cannot account for the bias-voltage dependence of the observed inelastic tunneling spectra. This paper shows that the bias-voltage dependence of the tunneling spectra can arise from the tunneling matrix elements of the electron-magnon interaction. These matrix elements are derived from the Coulomb exchange interaction using the itinerant-electron model of magnon-assisted tunneling. The results for the inelastic tunneling spectra, based on the nonequilibrium Green's function calculations, are presented for both parallel and antiparallel magnetizations in the ferromagnetic leads.Comment: 9 pages, 4 figures, version as publishe

    Revisiting Cardassian Model and Cosmic Constraint

    Full text link
    In this paper, we revisit the Cardassian model in which the radiation energy component is included. It is important for early epoch when the radiation cannot be neglected because the equation of state (EoS) of the effective dark energy becomes time variable. Therefore, it is not equivalent to the quintessence model with a constant EoS anymore. This situation was almost overlooked in the literature. By using the recent released Union2 557 of type Ia supernovae (SN Ia), the baryon acoustic oscillation (BAO) from Sloan Digital Sky Survey and the WiggleZ data points, the full information of cosmic microwave background (CMB) measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observation, we constrain the Cardassian model via the Markov Chain Monte Carlo (MCMC) method. A tight constraint is obtained: n=0.04790.07320.148+0.0730+0.142n= -0.0479_{- 0.0732- 0.148}^{+ 0.0730+ 0.142} in 1,2σ1,2\sigma regions. The deviation of Cardassian model from quintessence model is shown in CMB anisotropic power spectra at high l's parts due to the evolution of EoS. But it is about the order of 0.1% which cannot be discriminated by current data sets. The Cardassian model is consistent with current cosmic observational data sets.Comment: 6 pages, 5 figures, match the published versio
    corecore