34 research outputs found
Finite driving rates in interface models of Barkhausen noise
We consider a single-interface model for the description of Barkhausen noise
in soft ferromagnetic materials. Previously, the model had been used only in
the adiabatic regime of infinitely slow field ramping. We introduce finite
driving rates and analyze the scaling of event sizes and durations for
different regimes of the driving rate. Coexistence of intermittency, with
non-trivial scaling laws, and finite-velocity interface motion is observed for
high enough driving rates. Power spectra show a decay , with
for finite driving rates, revealing the influence of the internal
structure of avalanches.Comment: 7 pages, 6 figures, RevTeX, final version to be published in Phys.
Rev.
True Superconductivity in a 2D "Superconducting-Insulating" System
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition. Based on low-field
data and I-V characteristics, we find evidence of a low temperature
Metal-to-Superconductor transition. This transition is characterized by
hysteretic magnetoresistance and discontinuities in the I-V curves. The
metallic phase just above the transition is different from the "Fermi Metal"
before superconductivity sets in.Comment: 3 pages, 4 figure
Demagnetization via Nucleation of the Nonequilibrium Metastable Phase in a Model of Disorder
We study both analytically and numerically metastability and nucleation in a
two-dimensional nonequilibrium Ising ferromagnet. Canonical equilibrium is
dynamically impeded by a weak random perturbation which models homogeneous
disorder of undetermined source. We present a simple theoretical description,
in perfect agreement with Monte Carlo simulations, assuming that the decay of
the nonequilibrium metastable state is due, as in equilibrium, to the
competition between the surface and the bulk. This suggests one to accept a
nonequilibrium "free-energy" at a mesoscopic/cluster level, and it ensues a
nonequilibrium "surface tension" with some peculiar low-T behavior. We
illustrate the occurrence of intriguing nonequilibrium phenomena, including:
(i) Noise-enhanced stabilization of nonequilibrium metastable states; (ii)
reentrance of the limit of metastability under strong nonequilibrium
conditions; and (iii) resonant propagation of domain walls. The cooperative
behavior of our system may also be understood in terms of a Langevin equation
with additive and multiplicative noises. We also studied metastability in the
case of open boundaries as it may correspond to a magnetic nanoparticle. We
then observe burst-like relaxation at low T, triggered by the additional
surface randomness, with scale-free avalanches which closely resemble the type
of relaxation reported for many complex systems. We show that this results from
the superposition of many demagnetization events, each with a well- defined
scale which is determined by the curvature of the domain wall at which it
originates. This is an example of (apparent) scale invariance in a
nonequilibrium setting which is not to be associated with any familiar kind of
criticality.Comment: 26 pages, 22 figure
Fear Processing and Social Networking in the Absence of a Functional Amygdala
The human amygdala plays a crucial role in processing social signals, such as face expressions, particularly fearful ones, and facilitates responses to them in face-sensitive cortical regions. This contributes to social competence and individual amygdala size correlates with that of social networks. While rare patients with focal bilateral amygdala lesion typically show impaired recognition of fearful faces, this deficit is variable, and an intriguing possibility is that other brain regions can compensate to support fear and social signal processing.To investigate the brain's functional compensation of selective bilateral amygdala damage, we performed a series of behavioral, psychophysiological, and functional magnetic resonance imaging experiments in two adult female monozygotic twins (patient 1 and patient 2) with equivalent, extensive bilateral amygdala pathology as a sequela of lipoid proteinosis due to Urbach-Wiethe disease.Patient 1, but not patient 2, showed preserved recognition of fearful faces, intact modulation of acoustic startle responses by fear-eliciting scenes, and a normal-sized social network. Functional magnetic resonance imaging revealed that patient 1 showed potentiated responses to fearful faces in her left premotor cortex face area and bilaterally in the inferior parietal lobule.The premotor cortex face area and inferior parietal lobule are both implicated in the cortical mirror-neuron system, which mediates learning of observed actions and may thereby promote both imitation and empathy. Taken together, our findings suggest that despite the pre-eminent role of the amygdala in processing social information, the cortical mirror-neuron system may sometimes adaptively compensate for its pathology