5 research outputs found

    Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus

    No full text
    Systemic lupus erythematosus (SLE, MIM152700) is an autoimmune disease characterized by self-reactive antibodies resulting in systemic inflammation and organ failure. TNFAIP3, encoding the ubiquitin-modifying enzyme A20, is an established susceptibility locus for SLE. By fine mapping and genomic re-sequencing in ethnically diverse populations, we fully characterized the TNFAIP3 risk haplotype and identified a TT and gt;A polymorphic dinucleotide (deletion T followed by a T to A transversion) associated with SLE in subjects of European (P = 1.58 × 10-8, odds ratio = 1.70) and Korean (P = 8.33 × 10-10, odds ratio = 2.54) ancestry. This variant, located in a region of high conservation and regulatory potential, bound a nuclear protein complex composed of NF-?B subunits with reduced avidity. Further, compared with the non-risk haplotype, the haplotype carrying this variant resulted in reduced TNFAIP3 mRNA and A20 protein expression. These results establish this TT and gt;A variant as the most likely functional polymorphism responsible for the association between TNFAIP3 and SLE. © 2011 Nature America, Inc. All rights reserved

    Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus

    No full text
    Systemic lupus erythematosus (SLE, MIM152700) is an autoimmune disease characterized by self-reactive antibodies resulting in systemic inflammation and organ failure. TNFAIP3, encoding the ubiquitin-modifying enzyme A20, is an established susceptibility locus for SLE. By fine mapping and genomic re-sequencing in ethnically diverse populations, we fully characterized the TNFAIP3 risk haplotype and identified a TT and gt;A polymorphic dinucleotide (deletion T followed by a T to A transversion) associated with SLE in subjects of European (P = 1.58 × 10-8, odds ratio = 1.70) and Korean (P = 8.33 × 10-10, odds ratio = 2.54) ancestry. This variant, located in a region of high conservation and regulatory potential, bound a nuclear protein complex composed of NF-?B subunits with reduced avidity. Further, compared with the non-risk haplotype, the haplotype carrying this variant resulted in reduced TNFAIP3 mRNA and A20 protein expression. These results establish this TT and gt;A variant as the most likely functional polymorphism responsible for the association between TNFAIP3 and SLE. © 2011 Nature America, Inc. All rights reserved
    corecore