1,084 research outputs found

    REMOVED: Preparation of Nanofiltration Membranes using Sol–gel Transition of Organic Molecular Networks in their Phase–separating Mixtures with Linear Polymers

    Get PDF
    This article has been removed: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been removed at the request of the Executive Publisher.This article has been removed because it was published without the permission of the author(s)

    Seasonal Evolution of the Arctic Sea Ice Thickness Distribution

    Get PDF
    The Thorndike et al. (1975, https://doi.org/10.1029/jc080i033p04501) theory of the ice thickness distribution, g(h), treats the dynamic and thermodynamic aggregate properties of the ice pack in a novel and physically self-consistent manner. Therefore, it has provided the conceptual basis of the treatment of sea-ice thickness categories in climate models. The approach, however, is not mathematically closed due to the treatment of mechanical deformation using the redistribution function ψ, the authors noting “The present theory suffers from a burdensome and arbitrary redistribution function ψ.” Toppaladoddi and Wettlaufer (2015, https://doi.org/10.1103/physrevlett.115.148501) showed how ψ can be written in terms of g(h), thereby solving the mathematical closure problem and writing the theory in terms of a Fokker-Planck equation, which they solved analytically to quantitatively reproduce the observed winter g(h). Here, we extend this approach to include open water by formulating a new boundary condition for their Fokker-Planck equation, which is then coupled to the observationally consistent sea-ice growth model of Semtner (1976, https://doi.org/10.1175/1520-0485(1976)0062.0.co;2) to study the seasonal evolution of g(h). We find that as the ice thins, g(h) transitions from a single- to a double-peaked distribution, which is in agreement with observations. To understand the cause of this transition, we construct a simpler description of the system using the equivalent Langevin equation formulation and solve the resulting stochastic ordinary differential equation numerically. Finally, we solve the Fokker-Planck equation for g(h) under different climatological conditions to study the evolution of the open-water fraction

    Velocity Fluctuations in Electrostatically Driven Granular Media

    Full text link
    We study experimentally the particle velocity fluctuations in an electrostatically driven dilute granular gas. The experimentally obtained velocity distribution functions have strong deviations from Maxwellian form in a wide range of parameters. We have found that the tails of the distribution functions are consistent with a stretched exponential law with typical exponents of the order 3/2. Molecular dynamic simulations shows qualitative agreement with experimental data. Our results suggest that this non-Gaussian behavior is typical for most inelastic gases with both short and long range interactions.Comment: 4 pages, 4 figure

    Persistent Currents and Dissipation in Narrow Bilayer Quantum Hall Bars

    Full text link
    Bilayer quantum Hall states support a flow of nearly dissipationless staggered current which can only decay through collective channels. We study the dominant finite-temperature dissipation mechanism which in narrow bars is driven by thermal nucleation of pseudospin solitons. We find the finite-temperature resistivity, predict the resulting staggered current-voltage characteristics, and calculate the associated zero-temperature critical staggered current and gate voltage.Comment: 4 pgs. REVTeX, 3 eps figure

    Maternal pregnancy vitamin D supplementation increases offspring bone formation in response to mechanical loading : findings from a MAVIDOS trial sub-study

    Get PDF
    The Maternal Vitamin D Osteoporosis (MAVIDOS) trial reported higher total body bone mineral content in winter-born infants of mothers receiving vitamin D supplementation [1000 IU/day cholecalciferol] compared with placebo from 14 weeks gestation until delivery. This sub-study aimed to determine whether antenatal vitamin D supplementation altered postnatal bone formation in response to mechanical stimulation. Thirty-one children born to MAVIDOS participants randomised to either placebo (n=19) or cholecalciferol (n=12) were recruited at age 4-5 years. Children received whole body vibration (WBV) for 10 minutes on 5 consecutive days. Fasting blood samples for bone homeostasis, 25 hydroxyvitamin D (25OHD), parathyroid hormone (PTH), and bone turnover markers (Pro-collagen Type 1 N-terminal propeptide, P1NP; Cross-linked C-telopeptide of Type I Collagen, CTX) were collected pre-WBV and on day 8 (D8). Mean changes (D) in P1NP (ng/ml) between baseline and D8 in the vitamin-D intervention and placebo groups were 40.6 and -92.6 respectively and mean changes (Δ) in CTX (ng/ml) were 0.034 (intervention) and -0.084 (placebo) respectively. Between-group DP1NP difference was 133.2ng/ml [95% CI 0.4, 266.0; p=0.049] and ΔCTX 0.05ng/ml (95% CI -0.159, 0.26ng/mL; p=0.62). Antenatal vitamin-D supplementation resulted in increased P1NP in response to WBV, suggesting early life vitamin D supplementation increases the anabolic response of bone to mechanical loading in children

    On the topological classification of binary trees using the Horton-Strahler index

    Full text link
    The Horton-Strahler (HS) index r=max(i,j)+δi,jr=\max{(i,j)}+\delta_{i,j} has been shown to be relevant to a number of physical (such at diffusion limited aggregation) geological (river networks), biological (pulmonary arteries, blood vessels, various species of trees) and computational (use of registers) applications. Here we revisit the enumeration problem of the HS index on the rooted, unlabeled, plane binary set of trees, and enumerate the same index on the ambilateral set of rooted, plane binary set of trees of nn leaves. The ambilateral set is a set of trees whose elements cannot be obtained from each other via an arbitrary number of reflections with respect to vertical axes passing through any of the nodes on the tree. For the unlabeled set we give an alternate derivation to the existing exact solution. Extending this technique for the ambilateral set, which is described by an infinite series of non-linear functional equations, we are able to give a double-exponentially converging approximant to the generating functions in a neighborhood of their convergence circle, and derive an explicit asymptotic form for the number of such trees.Comment: 14 pages, 7 embedded postscript figures, some minor changes and typos correcte

    Collision statistics of driven granular materials

    Full text link
    We present an experimental investigation of the statistical properties of spherical granular particles on an inclined plane that are excited by an oscillating side-wall. The data is obtained by high-speed imaging and particle tracking techniques. We identify all particles in the system and link their positions to form trajectories over long times. Thus, we identify particle collisions to measure the effective coefficient of restitution and find a broad distribution of values for the same impact angles. We find that the energy inelasticity can take on values greater than one, which implies that the rotational degrees play an important role in energy transfer. We also measure the distance and the time between collision events in order to directly determine the distribution of path lengths and the free times. These distributions are shown to deviate from expected theoretical forms for elastic spheres, demonstrating the inherent clustering in this system. We describe the data with a two-parameter fitting function and use it to calculated the mean free path and collision time. We find that the ratio of these values is consistent with the average velocity. The velocity distribution are observed to be strongly non-Gaussian and do not demonstrate any apparent universal behavior. We report the scaling of the second moment, which corresponds to the granular temperature, and higher order moments as a function of distance from the driving wall. Additionally, we measure long time correlation functions in both space and in the velocities to probe diffusion in a dissipative gas.Comment: 12 pages, 4 figures, uses revtex

    Topological self-similarity on the random binary-tree model

    Full text link
    Asymptotic analysis on some statistical properties of the random binary-tree model is developed. We quantify a hierarchical structure of branching patterns based on the Horton-Strahler analysis. We introduce a transformation of a binary tree, and derive a recursive equation about branch orders. As an application of the analysis, topological self-similarity and its generalization is proved in an asymptotic sense. Also, some important examples are presented

    Quantum railroads and directed localization at the juncture of quantum Hall systems

    Full text link
    The integer quantum Hall effect (QHE) and one-dimensional Anderson localization (AL) are limiting special cases of a more general phenomenon, directed localization (DL), predicted to occur in disordered one-dimensional wave guides called "quantum railroads" (QRR). Here we explain the surprising results of recent measurements by Kang et al. [Nature 403, 59 (2000)] of electron transfer between edges of two-dimensional electron systems and identify experimental evidence of QRR's in the general, but until now entirely theoretical, DL regime that unifies the QHE and AL. We propose direct experimental tests of our theory.Comment: 11 pages revtex + 3 jpeg figures, to appear in Phys. Rev.

    Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

    Get PDF
    Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treatments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3
    corecore