241 research outputs found

    Constraining the IMF using TeV gamma ray absorption

    Get PDF
    Gamma rays of ~TeV energies from distant sources suffer attenuation due to pair production off of ~1 micron EBL photons. We may exploit this process in order to indirectly measure the EBL and constrain models of galaxy formation. Here, using semi-analytic models of galaxy formation, we examine how gamma ray absorption may be used as an indirect probe of the stellar initial mass function (IMF), although there is a degeneracy with dust modeling. We point out that with the new generation of gamma ray telescopes including STACEE, MAGIC, HESS, VERITAS, and Milagro, we should soon possess a wealth of new data and a new method for probing the nature of the IMF.Comment: contribution to "TeV Astrophysics of Extragalactic Sources" VERITAS workshop, editors M. Catanese, J. Quinn, T. Weekes; 3 pages 1 figur

    Resolving the Outer Disks and Halos of Nearby Galaxies

    Full text link
    In a hierarchical merging scenario, the outer parts of a galaxy are a fossil record of the galaxy's early history. Observations of the outer disks and halos of galaxies thus provide a tool to study individual galaxy histories and test formation theories. Locally, an impressive effort has been made to understand the halo of the Milky Way, Andromeda, and M33. However, due to the stochastic nature of halo formation, a better understanding of this process requires a large sample of galaxies with known halo properties. The GHOSTS project (PI: R. de Jong) aims to characterize the halos and outer portions of 14 nearby (D=4-14 Mpc) spiral galaxies using the Hubble Space Telescope. Detection of individual stars in the outer parts of these galaxies enables us to study both the morphological properties of the galaxies, and determine the stars' metallicity and age.Comment: Contributed talk; to appear in the proceedings of "Galaxies in the Local Volume" Sydney 8-13 July 200

    Constraining scalar fields with stellar kinematics and collisional dark matter

    Full text link
    The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass mϕm_\phi and the self-interacting coupling constant λ\lambda of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nucleiComment: 23 pages, 8 figures; accepted for publication by JCAP after minor change

    Evolution and instabilities of disks harboring super massive black holes

    Full text link
    The bar formation is still an open problem in modern astrophysics. In this paper we present numerical simulation performed with the aim of analyzing the growth of the bar instability inside stellar-gaseous disks, where the star formation is triggered, and a central black hole is present. The aim of this paper is to point out the impact of such a central massive black hole on the growth of the bar. We use N-body-SPH simulations of the same isolated disk-to-halo mass systems harboring black holes with different initial masses and different energy feedback on the surrounding gas. We compare the results of these simulations with the one of the same disk without black hole in its center. We make the same comparison (disk with and without black hole) for a stellar disk in a fully cosmological scenario. A stellar bar, lasting 10 Gyrs, is present in all our simulations. The central black hole mass has in general a mild effect on the ellipticity of the bar but it is never able to destroy it. The black holes grow in different way according their initial mass and their feedback efficiency, the final values of the velocity dispersions and of the black hole masses are near to the phenomenological constraints.Comment: 10 pages, 8 figures, accepted for pubblication in "Astrophysics and Space Science

    Primordial black hole production due to preheating

    Get PDF
    During the preheating process at the end of inflation the amplification of field fluctuations can lead to the amplification of curvature perturbations. If the curvature perturbations on small scales are sufficiently large, primordial black holes (PBHs) will be overproduced. In this paper we study PBH production in the two-field preheating model with quadratic inflaton potential. We show that for many values of the inflaton mass m, and coupling g, small scale perturbations will be amplified sufficiently, before backreaction can shut off preheating, so that PBHs will be overproduced during the subsequent radiation dominated era.Comment: 5 pages, 3 eps figures. Minor changes to match version to appear in PRD as a rapid communicatio

    Substructures in lens galaxies: PG1115+080 and B1555+375, two fold configurations

    Full text link
    We study the anomalous flux ratio which is observed in some four-image lens systems, where the source lies close to a fold caustic. In this case two of the images are close to the critical curve and their flux ratio should be equal to unity, instead in several cases the observed value differs significantly. The most plausible solution is to invoke the presence of substructures, as for instance predicted by the Cold Dark Matter scenario, located near the two images. In particular, we analyze the two fold lens systems PG1115+080 and B1555+375, for which there are not yet satisfactory models which explain the observed anomalous flux ratios. We add to a smooth lens model, which reproduces well the positions of the images but not the anomalous fluxes, one or two substructures described as singular isothermal spheres. For PG1115+080 we consider a smooth model with the influence of the group of galaxies described by a SIS and a substructure with mass 105M\sim 10^{5} M_{\odot} as well as a smooth model with an external shear and one substructure with mass 108M\sim 10^{8} M_{\odot} . For B1555+375 either a strong external shear or two substructures with mass 107M\sim 10^{7} M_{\odot} reproduce the data quite well.Comment: 26 pages, updated bibliography, Accepted for publication in Astrophysics & Space Scienc

    CMB-Cluster Lensing

    Full text link
    Clusters of galaxies are powerful cosmological probes, particularly if their masses can be determined. One possibility for mass determination is to study the cosmic microwave background (CMB) on small angular scales and observe deviations from a pure gradient due to lensing of massive clusters. I show that, neglecting contamination, this technique has the power to determine cluster masses very accurately, in agreement with estimates by Seljak and Zaldarriaga (1999). However, the intrinsic small scale structure of the CMB significantly degrades this power. The resulting mass constraints are useless unless one imposes a prior on the concentration parameter c. With even a modest prior on c, an ambitious CMB experiment (0.5' resolution and 1 microK per pixel) could determine masses of high redshift (z>0.5) clusters with ~ 30% accuracy.Comment: 17 pages, 10 figure

    Effect of halo modelling on WIMP exclusion limits

    Get PDF
    WIMP direct detection experiments are just reaching the sensitivity required to detect galactic dark matter in the form of neutralinos. Data from these experiments are usually analysed under the simplifying assumption that the Milky Way halo is an isothermal sphere with maxwellian velocity distribution. Observations and numerical simulations indicate that galaxy halos are in fact triaxial and anisotropic. Furthermore, in the cold dark matter paradigm galactic halos form via the merger of smaller subhalos, and at least some residual substructure survives. We examine the effect of halo modelling on WIMP exclusion limits, taking into account the detector response. Triaxial and anisotropic halo models, with parameters motivated by observations and numerical simulations, lead to significant changes which are different for different experiments, while if the local WIMP distribution is dominated by small scale clumps then the exclusion limits are changed dramatically.Comment: 9 pages, 9 figures, version to appear in Phys. Rev. D, minor change

    Acceptability and Feasibility of Community-Based, Lay Navigator-Facilitated At-Home Self-Collection for Human Papillomavirus Testing in Underscreened Women

    Get PDF
    Objective: Women without regular health care providers or a medical home routinely fail to complete recommended cervical cancer screening. At-home self-collection of samples to test for high-risk strains of human papillomavirus (hrHPV) can improve screening rates. This study documents acceptability and feasibility of community lay navigator (LN)-facilitated at-home self-collection for underscreened women in Appalachian Virginia. Materials and Methods: This study used mixed methods in three phases. Phase I involved focus groups of LNs to ensure cultural acceptability of self-collection, and to enhance recruitment of medically underserved women. An environmental scan of community resources and climate was created in Phase II. During Phase III, underscreened women in Appalachian Virginia (the far southwest corner of Virginia) were recruited to complete hrHPV testing using LN-provided self-collection kits. Results: LN-facilitated at-home self-collection for HPV testing was deemed culturally acceptable and feasible to participants in this community-based pilot study. Self-kit training included 64 LNs, of which 35 engaged in the study and were provided 77 kits and instructions. A total of 59 self-kits were returned, of which 42 were correctly completed with valid HPV results, yielding a 16.6% hrHPV rate. Conclusions: Over a quarter of the women LNs recruited had no medical home, indicating this delivery model may have potential to reach women at increased risk of being underscreened for cervical cancer. Research is needed to identify optimal approaches to increase LN participation in outreach self-collection interventions
    corecore