18 research outputs found

    Exciton G Factor Of Type-ii Inp Gaas Single Quantum Dots

    Get PDF
    We investigated the magneto-optical properties of type-II InP GaAs quantum dots using single-dot spectroscopy. The emission energy from individual dots presents a quadratic diamagnetic shift and a linear Zeeman splitting as a function of magnetic fields up to 10 T, as previously observed for type-I systems. We analyzed the in-plane localization of the carriers using the diamagnetic shift results. The values for the exciton g factor obtained for a large number of a InP GaAs dots are mainly constant, independent of the emission energy, and therefore, of the quantum dot dimensions. The result is attributed to the weak confinement of the holes in type-II InP GaAs quantum dots. © 2006 The American Physical Society.733Toda, Y., Shinomori, S., Suzuki, K., Arakawa, Y., (1998) Appl. Phys. Lett., 73, p. 517. , APPLAB 0003-6951 10.1063/1.121919Bayer, M., Kuther, A., Schäfer, F., Reithmaier, J.P., Forchel, A., (1999) Phys. Rev. B, 60, p. 8481. , PRBMDO. 0163-1829. 10.1103/PhysRevB.60.R8481Sugisaki, M., Ren, H.-W., Nishi, K., Sugou, S., Okuno, T., Masumoto, Y., (1998) Physica B, 256-258, p. 169. , PHYBE3 0921-4526Kotlyar, R., Reinecke, T.L., Bayer, M., Forchel, A., (2001) Phys. Rev. B, 63, p. 085310. , PRBMDO 0163-1829 10.1103/PhysRevB.63.085310Ribeiro, E., Govorov, A.O., Carvalho Jr., W., Medeiros-Ribeiro, G., (2004) Phys. Rev. Lett., 92, p. 126402. , PRLTAO 0031-9007 10.1103/PhysRevLett.92.126402Janssens, K.L., Partoens, B., Peeters, F.M., (2002) Phys. Rev. B, 66, p. 075314. , PRBMDO 0163-1829 10.1103/PhysRevB.66.075314Kalameitsev, A.B., Kovalev, V.M., Govorov, A.O., (1989) JETP Lett., 68, p. 669. , JTPLA2 0021-3640 10.1134/1.567926Sugisaki, M., Ren, H.W., Nair, S.V., Nishi, K., Masumoto, Y., (2002) Phys. Rev. B, 66, p. 235309. , PRBMDO 0163-1829 10.1103/PhysRevB.66.235309Godoy, M.P.F., Nakaema, M.K.K., Iikawa, F., Carvalho Jr., W., Ribeiro, E., Gobby, A.L., (2004) Rev. Sci. Instrum., 75, p. 1947. , RSINAK 0034-6748 10.1063/1.1753090Walck, S.N., Reinecke, T.L., (1998) Phys. Rev. B, 57, p. 9088. , PRBMDO 0163-1829 10.1103/PhysRevB.57.9088Laheld, U.E.H., Pedersen, F.B., Hemmer, P.C., (1993) Phys. Rev. B, 48, p. 4659. , PRBMDO 0163-1829 10.1103/PhysRevB.48.4659Bastard, G., Mendez, E.E., Chang, L.L., Esaki, L., (1982) Phys. Rev. B, 26, p. 1974. , PRBMDO 0163-1829 10.1103/PhysRevB.26.1974Nakaoka, T., Saito, T., Tatebayashi, J., Arakawa, Y., (2004) Phys. Rev. B, 70, p. 235337. , PRBMDO 0163-1829 10.1103/PhysRevB.70.235337Yugova, I.A., Ya. Gerlovin, I., Davydov, V.G., Ignatiev, I.V., Kozin, I.E., Ren, H.W., Sugisaki, M., Masumoto, Y., (2002) Phys. Rev. B, 66, p. 235309. , PRBMDO 0163-1829 10.1103/PhysRevB.66.235309Willmann, F., Suga, S., Dreybrodt, W., Cho, K., (1974) Solid State Commun., 14, p. 783. , SSCOA4 0038-1098Landi, S.M., Tribuzy, C.V.B., Souza, P.L., Butendeich, R., Bittencourt, A.C., Marques, G.E., (2003) Phys. Rev. B, 67, p. 085304. , PRBMDO 0163-1829 10.1103/PhysRevB.67.08530

    Carrier Dynamics In Stacked Inpgaas Quantum Dots

    Get PDF
    We investigated two stacked layers of InPGaAs type-II quantum dots by transmission electron microscopy and optical spectroscopy. The results reveal that InP quantum dots formed in two quantum dot layers are more uniform than those from a single layer structure. The thermal activation energies as well as the photoluminescence decays are rather independent of the separation between quantum dot layers and the presence of the second layer. The quantum dot optical emission persists for thermal activation energy larger than the calculated exciton binding energy. The photoluminescence decay is relatively fast for type-II alignment. © 2007 American Institute of Physics.9112Goldstein, L., Glas, F., Marzin, M.J.Y., Charasse, N., Le Roux, G., (1985) Appl. Phys. Lett., 47, p. 1099Xie, Q., Madhkar, A., Chen, P., Kobayashi, N., (1995) Phys. Rev. Lett., 75, p. 2542Ledentsov, N.N., Shchukin, V.A., Grundmann, M., Kirstaedter, N., Böhmer, J., Schmidt, O., Bimberg, D., Heydenreich, J., (1996) Phys. Rev. B, 54, p. 8743Solomon, G.S., Trezza, J.A., Marchall, A.F., Harris Jr., J.S., (1996) Phys. Rev. Lett., 76, p. 952Sugiyama, Y., Nakata, Y., Futatsugi, T., Sugawara, M., Awano, Y., Yokoyama, N., (1996) Jpn. J. Appl. Phys., Part 2, 36, p. 158Schmidt, O.G., Kienzie, O., Hao, Y., Eberl, K., (1999) Appl. Phys. Lett., 74, p. 1272Chang, W.-H., Chen, W.-Y., Chou, A.-T., Hsu, T.-M., Chen, P.-S., Pei, Z., Lai, L.-S., (2003) J. Appl. Phys., 93, p. 4999Susuki, K., Hogg, R.A., Arakawa, Y., (1999) J. Appl. Phys., 85, p. 8349Sun, C.-K., Wang, G., Bowers, J.E., Brar, B., Blank, H.-R., Kroemer, H., Pilkuhn, M.H., (1996) Appl. Phys. Lett., 68, p. 1543Hatami, F., Grundmann, M., Ledentsov, N.N., Heinrichsdorff, F., Heitz, R., Böhrer, J., Bimberg, D., Alferov Zh., I., (1998) Phys. Rev. B, 57, p. 4635De Godoy, M.P.F., Gomes, P.F., Nakaema, M.K.K., Iikawa, F., Brasil, M.J.S.P., Caetano, R.A., Madureira, J.R., Bittencourt, A.C.R., (2006) Phys. Rev. B, 73, p. 033309Wang, B., Chua, S.-J., (2001) Appl. Phys. Lett., 78, p. 628Nakaema, M.K.K., Iikawa, F., Brasil, M.J.S.P., Ribeiro, E., Medeiros-Ribeiro, G., Carvalho Jr., W., Maialle, M.Z., Degani, M.H., (2002) Appl. Phys. Lett., 81, p. 2743Zundel, M.K., Specht, P., Eberl, K., Jin-Phillipp, N.Y., Phillipp, F., (1997) Appl. Phys. Lett., 71, p. 2972Sanguinetti, S., Henini, M., Grassi Alessi, M., Capizzi, M., Frigeri, P., Franchi, S., (1999) Phys. Rev. B, 60, p. 827

    Characterization Of Pecvd A-c:h:si:o:cl Films

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Thin films were produced by plasma enhanced chemical vapor deposition of tetramethylsilane, chloroform, and argon mixtures. The partial pressure of chloroform in the chamber feed, CCl, was varied from 0% to 40%. Amorphous hydrogenated carbon films also containing silicon, oxygen, and small amounts of chlorine, a-C:H:Si:O:Cl, were produced at deposition rates of up to about 220 nm min−1 (for a CCl of 40%). Transmission infrared analyses revealed the presence of OH groups in chlorinated films, along with, among others, CH, C=C, Si-CH, Si-CH2, and Si-O-Si groups. As revealed by energy dispersive x-ray spectroscopy, the films could be doped with chlorine to a maximum of about 3 at. %. Surface morphology and roughness were examined using scanning electron microscopy and atomic force microscopy. Tauc band gaps, calculated from transmission ultraviolet-visible near infrared spectra, tend to decrease from ∼3.4 eV for unchlorinated films to around 2.5 eV for those doped with chlorine. © 2017 American Vacuum Society.354CNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    On The Nucleation Of Gap/gaas And The Effect Of Buried Stress Fields

    No full text
    We have recently shown that spatial ordering for epitaxially grown InP dots can be obtained using the periodic stress field of compositional modulation on the InGaP buffer layer. The aim of this present work is to study the growth of films of GaP by Chemical Beam Epitaxy (CBE), with in-situ monitoring by Reflection High Energy Electron Diffraction (RHEED), on layers of unstressed and stressed GaAs. Complementary, we have studied the role of a buried InP dot array on GaP nucleation in order to obtain three-dimensional structures. In both cases, the topographical characteristics of the samples were investigated by Atomic Force Microscopy (AFM) in non-contact mode. Thus vertically-coupled quantum dots of different materials have been obtained keeping the in-place spatial ordering originated from the composition modulation. © 2006 Materials Research Society.891133138Shchukin, V., Bimberg, D., (1999) Rev. Mod. Phys., 71, p. 1125Lee, H., Johnson, J.A., He, M.Y., Speck, J.S., Petroff, P.M., (2001) Appl. Phys. Lett., 78, p. 105Lee, C.-S., Kahng, B., Barabási, A.-L., (2001) Appl. Phys. Lett., 78, p. 984Bortoleto, J.R.R., Gutiérrez, H.R., Cotta, M.A., Bettini, J., Cardoso, L.P., De Carvalho, M.M.G., (2003) Appl. Phys. Lett., 82, p. 3523Henoc, P., Izrael, A., Quilec, M., Launois, H., (1982) Appl. Phys. Lett., 40, p. 963Lapierre, R.R., Okada, T., Robinson, B.J., Thompson, D.A., Weatherly, G.C., (1995) J. Cryst. Growth, 155, p. 1Perió, F., Cornet, A., Morante, J.R., Georgakilas, A., Wood, C., Christou, A., (1995) Appl. Phys. Lett., 66, p. 2391Okada, T., Weatherly, G.C., McComb, D.W., (1997) J. Appl. Phys., 81, p. 2185Guyer, J.E., Barnett, S.A., Voorhees, P.W., (2000) J. Cryst. Growth, 217, p. 1Leonard, F., Desai, R.C., (2002) Appl. Phys. Lett., 74, p. 40Huang, Z.F., Desai, R.C., (2002) Phys Rev. B, 65, p. 205419Spencer, B.J., Voorhees, P.W., Tersoff, J., (2000) Apll. Phys. Lett., 76, p. 3022Spencer, B.J., Voorhees, P.W., Tersoff, J., (2001) Phys. Rev. B, 64, p. 235318Bortoleto, J.R.R., Gutiérrez, H.R., Bettini, J., Cotta, M.A., (2005) Appl. Phys. Lett., 87, p. 013105Xie, Q., Madhukar, A., Chen, P., Kobayashi, N.P., (1995) Phys. Rev. Lett., 75, p. 2542Medeiros-Ribeiro, G., Maltez, R.L., Bernussi, A.A., Ugarte, D., De Carvalho Jr., W., Seeding of InP islands on InAs quantum dot templates (2001) J. Appl. Phys., 89, p. 6548Leonard, D., Pond, K., Petroff, P.M., Critical layer thickness for self-assembled InAs islands on GaAs (1994) Phys. Rev. B, 50, p. 11867Kobayashi, N.P., Ramachandran, T.R., Chen, P., Madhukar, A., In situ, atomic force microscope studies of the evolution of InAs three-dimensional islands on GaAs(001) (1996) Appl. Phys. Lett., 68, p. 3299Barabási, A.L., Thermodynamic and kinetic mechanisms in self-assembled quantum dot formation (1999) Mat. Sci. Eng. B, 67, p. 23Suekane, O., Hasegawa, S., Takata, M., Okui, T., Nakashima, H., Scanning tunneling microscopy study of InAs islands grown on GaAs(001) substrates (2002) Mat. Sci. Eng. B, 88, p. 158Saito, H., Nishi, K., Sugou, S., Shape transition of InAs quantum dots by growth at high temperature (1999) Appl. Phys. Lett., 74, p. 122

    Strain Relaxation And Stress-driven Interdiffusion In Inasingaasinp Nanowires

    No full text
    The authors have investigated strain relaxation in InAsInGaAsInP nanowires (NW's). Transmission electron microscopy images show an additional stress field attributed to compositional modulation in the ternary layer, which disrupts NW formation and drives Ga interdiffusion into InAs, according to grazing incidence x-Ray diffraction under anomalous scattering conditions. The strain profile along the NW, however, is not significantly affected when interdiffusion is considered. Results show that the InAs NW energetic stability is preserved with the introduction of ternary buffer layer in the structure. © 2007 American Institute of Physics.916Yoffe, A.D., (2001) Adv. Phys., 50, p. 1Brault, J., Gendry, M., Grenet, G., Hollinger, G., Dieres, Y., Benyattou, T., (1998) Appl. Phys. Lett., 73, p. 2932Yoon, H., Moon, Y., Lee, T., Yoon, E., Kim, Y., (1999) Appl. Phys. Lett., 74, p. 2029Ustinov, V.M., Weber, E.R., Ruvimov, S., Liliental-Weber, Z., Zhukov, A.E., Yu. Egorov, A., Kovsh, A.R., Kopev, P.S., (1998) Appl. Phys. Lett., 72, p. 362Li, H., Daniels-Race, T., Hasan, M.A., (2002) Appl. Phys. Lett., 80, p. 1367Suárez, F., Fuster, D., González, L., González, Y., García, J.M., Dotor, M.L., (2006) Appl. Phys. Lett., 89, p. 091123García, J.M., González, L., González, M.U., Silveira, J.P., González, Y., Briones, F., (2001) J. Cryst. Growth, 227, p. 975Saint-Girons, G., Michon, A., Sagnes, I., Beaudoin, G., Patriarche, G., (2006) Phys. Rev. B, 74, p. 245305Gutírrez, H.R., Cotta, M.A., Bortoleto, J.R.R., (2002) J. Appl. Phys., 92, p. 7523Kegel, I., Metzger, T.H., Lorke, A., Peisl, J., Stangl, J., Bauer, G., Garcia, J.M., Petroff, P.M., (2000) Phys. Rev. Lett., 85, p. 1694Gutírrez, H.R., Magalhães-Paniago, R., Bortoleto, J.R.R., Cotta, M.A., (2004) Appl. Phys. Lett., 85, p. 3581Sztucki, M., Schülli, T.U., Metzger, T.H., Beham, E., Schuh, D., Chamard, V., (2004) Superlattices Microstruct., 36, p. 11Malachias, A., Magalhães-Paniago, R., Kycia, S., Gahill, D., (2004) J. Appl. Phys., 96, p. 3234Gutírrez, H.R., Cotta, M.A., De Carvalho, M.G., (2001) Appl. Phys. Lett., 79, p. 3854Peiró, F., Ferrer, J.C., Cornet, A., Calamiotou, M., Georgakilas, A., (2003) Phys. Status Solidi A, 195, p. 32Bortoleto, J.R.R., Gutírrez, H.R., Cotta, M.A., Bettini, J., (2007) J. Appl. Phys., 101, p. 064907Bortoleto, J.R.R., Gutírrez, H.R., Cotta, M.A., Bettini, J., (2005) Appl. Phys. Lett., 87, p. 013105Henoc, P., Izrael, A., Quillec, M., Launois, H., (1982) Appl. Phys. Lett., 40, p. 96

    An N2: Ch4: H2o Dc Glow Discharge Plasma Probed By Optical And Electric Techniques: Significance To The Radiation Chemistry Of Titan's Upper Atmosphere In The Presence Of Meteoritic Water

    No full text
    This paper presents optical and electrical measurements on plasma generated by DC excited glow discharges in mixtures composed of 95% N2, 4.8% CH4 and 0.2% H2O at pressures varying from 1.064 mbar to 4.0 mbar. The discharges simulate the chemical reactions that may occur in Titan's atmosphere in the presence of meteorites and ice debris coming from Saturn's systems, assisted by cosmic rays and high energy charged particles. The results obtained from actinometric optical emission spectroscopy, combined with the results from a pulsed Langmuir probe, show that chemical species CH, CN, NH and OH are important precursors in the synthesis of the final solid products and that the chemical kinetics is essentially driven by electronic collision processes. It is shown that the presence of water is sufficient to produce complex solid products whose components are important in prebiotic compound synthesis. © 1998 Elsevier Science Ltd. All rights reserved.468969974Borucki, W.J., McKay, C.P., Whitten, R.C., Possible production by lightning of aerosol and traces in Titan's atmosphere (1984) Icarus, 60, pp. 260-273Cabane, M., Chassefière, E., Laboratory simulations of Titan's atmosphere: Organic gases and aerosols (1995) Planet. Space Sci., 43, pp. 47-65Chang, S., Prebiotic synthesis in planetary environments (1991) The Chemistry of Life's Origins, 416, pp. 259-299. , eds J. M. Greensberg, C. X. Mendoza-Gómez and V. Pirronello, NATP ASI Series C. Kluwer Academic Publishers, The NetherlandsCherrington, B.E., The use of electrostatic probes for plasma diagnostics - A review (1982) Plasma Chem. Plasma Proc., 2, pp. 113-140Coburn, J.W., Chen, M., Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle densities (1980) J. Appl. Phys., 51, pp. 3134-3136Coustenis, A., Bèzard, B., Gautier, D., Titan's atmosphere from Voyager infrared observations. I. The gas composition of Titan's equatorial region (1989) Icarus, 80, pp. 54-76Coustenis, A., Bèzard, B., Gautier, D., Titan's atmosphere from Voyager infrared observations. III. Vertical distribution of hydrocarbons and nitriles near Titan's north pole (1991) Icarus, 89, pp. 152-167D'Agostino, R., Cramarossa, F., De Benedictis, S., Ferraro, G., Spectroscopic diagnostics of CF4-O2 plasmas during Si and SiO2 etching processes (1981) J. Appl. Phys., 52, pp. 1259-1265D'Agostino, R., Framarossa, F., De Benedictis, S., Fracassi, F., Láska, L., Mašek, K., On the use of actinometric emission spectroscopy in SF6-O2 radio frequency discharges: Theoretical and experimental analysis (1985) Plasma Chem. Plasma Proc., 5, pp. 239-253Durrant, S.F., Mota, R.P., Moraes, M.A.B., Flu orinated polymer films from RF plasmas containing benzene and sulfur hexafluoride (1992) Thin Solid Films, 220, pp. 295-302Hanel, R., Conrath, B., Flasar, F.M., Kunde, V., Maguire, W., Pearl, J., Pirraglia, J., Ponnamperuma, C., Infrared observations of the Saturnian system from Voyager 1 (1981) Science, 212, pp. 192-200Krimigis, S.M., Armstrong, T.P., Axford, W.I., Bostrom, C.O., Gloekler, G., Keath, E.P., Lanzerotti, L.J., Roelof, E.C., Low-energy charged particles in Saturn's magnetosphere: Results from Voyager 1 (1981) Science, 212, pp. 225-231Krimigis, S.M., Armstrong, T.P., Axford, W.I., Bostrom, C.O., Gloekler, G., Keath, E.P., Lanzerotti, L.J., Roelof, E.C., Low-energy hot plasma and particles in Saturn's magnetosphere (1982) Science, 215, pp. 571-577McDonald, G.D., Thompson, W.R., Heinrich, M., Khare, B., Sagan, C., Chemical investigation on Titan and Triton tholins (1994) Icarus, 108, pp. 137-145Neumann, G., Banzigern, U., Kammeyer, M., Lange, M., Plasma-density measurements by microwave interferometry and Langumuir probes in an RF-discharge (1993) Rev. Sci. Instrum., 64, pp. 19-25Owen, T., How primitive are the gases in Titan's atmosphere (1987) Adv. Space. Res., 7, pp. 51-54Raulin, F., Dubouloz, N., Frère, C., Prebiotic-like organic synthesis in extraterrestrial environments: The case of Titan (1989) Adv. Space Res., 9, pp. 35-47Raulin, F., Frère, C., Paillous, P., De Vanssay, E., Do, L., Khlifi, M., Titan and exobiological aspects of the Cassini-Huygens mission (1992) J. British Interplanetary Soc., 45, pp. 257-271Sagan, C., Khare, B.N., Tholins: Organic chemistry of interstellar grains and gas (1979) Nature, 277, pp. 102-107Sagan, C., Miller, S.L., Molecular synthesis in simulated reducing planetary atmospheres (1960) Astron. J., 65, p. 499Sagan, C., Thompson, W.R., Production and condensation of organic gases in the atmosphere of Titan (1984) Icarus, 59, pp. 133-161Sagan, C., Thompson, W.R., Khare, B.N., Titan: A laboratory for prebiological organic chemistry (1992) Acc. Chem. Res., 25, pp. 286-292Sudit, I.D., Woods, R.C., A workstation based Langmuir probe system for low-pressure DC plasmas (1993) Rev. Sci. Instrum., 64, pp. 2440-2448Vogt, R.E., Chenette, D.L., Cummings, A.C., Garrard, T.L., Stone, E.C., Schardt, A.W., Trainor, J.H., McDonald, F.B., Energetic charged particles in Saturn's magnetosphere: Voyager 1 results (1981) Science, 212, pp. 231-234Vogt, R.E., Chenette, D.L., Cummings, A.C., Garrard, T.L., Stone, E.C., Schardt, A.W., Trainor, J.H., McDonald, F.B., Energetic charged particles in Saturn's magnetosphere: Voyager 2 results (1982) Science, 215, pp. 577-582Thompson, W.R., Henry, T.J., Schwartz, J.M., Khare, B.N., Sagan, C., Plasma discharge in N2 and CH4 at low pressures: Experimental results and application to Titan (1991) Icarus, 90, pp. 57-73Yasuda, H., (1985) Plasma Polymerization, , Academic Press, Inc., Orlando, U.S.AYung, Y.L., An update of nitrile photochemistry on Titan (1987) Icarus, 72, pp. 468-47

    Magneto-optics From Type-ii Single Quantum Dots

    No full text
    We investigated single InP quantum dots embedded in GaAs using micro-photoluminescence as a function of the excitation intensity. InP/GaAs dots exhibit a type-II band alignment, which leads to a spatial separation of the carriers. The effect of a magnetic field on these type-II quantum dots were also investigated through micro-photoluminescence measurements. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.13543546Lelong, Ph., Suzuki, K., Bastard, G., Sakaki, H., Arakawa, Y., (2000) Physica E, 7, p. 93Sugisaki, M., Ren, H.-W., Nair, S.V., Nishi, K., Masumoto, U., (2002) Phys. Rev. B, 66, p. 235309Sugisaki, M., Ren, H.-W., Nishi, K., Sugou, S., Okuno, R., Masumoto, U., (1998) Physica B, 256, p. 169Chen, Y., Gil, B., Mathieu, H., Lascaray, J.P., (1987) Phys. Rev. B, 36, p. 151

    Growth Evolution Of Self-textured Zno Films Deposited By Magnetron Sputtering At Low Temperatures

    No full text
    In this work, the evolution of the surface morphology of ZnO thin films deposited by reactive RF magnetron sputtering has been investigated using atomic force microscopy (AFM) and X-ray diffraction (XRD). All AFM images of the films were analyzed using scaling concepts. To study the growth evolution, different ZnO films with thicknesses of up to 1270nm were deposited at temperatures of 100 and 250°C. For the films grown at 100°C, AFM data show that the lateral length ξ evolves continuously while the temporal evolution of the root mean square roughness σ presents two distinct regimes. Early during the depositions, the morphology of the ZnO films is mainly characterized by granular structures. Beyond thickness of about 600nm, pyramid-like structures with {214} crystallographic facets start to develop. For the films grown at 250°C, however, only one growth regime was observed and for the thicker films, the surface morphology consisted of polygonal structures. For the films grown at 100°C, the growth exponents, β, and the exponent defining the evolution of the characteristic wavelength of the surface, p, were β 1 =0.70±0.02 and β 2 =0.26±0.2; and p =0.2±0.04. For the films grown at 250°C, the exponent values were β =0.78±0.02 and p =0.32±0.05. These values of the exponents indicate the occurrence of surface mechanisms, such as shadowing and surface diffusion, as well as facet stabilization at 100°C. For the films grown at 250°C, however, structural misorientation during growth also plays an important role

    Carbon Nanotube Probe Resolution: A Quantitative Analysis Using Fourier Transform

    No full text
    A method to quantify the resolution of atomic force microscopy (AFM) probes using Fourier analysis of the AFM images is proposed. The maximum detectable spatial frequency obtained from the power spectrum was used to estimate the lateral resolution. Carbon nanotube tips were successfully used to study very dense arrays of semiconductor nanostructures. In particular, accurate measurements of shallow facet angles were obtained, which are in perfect agreement with results obtained by two complementary techniques - High Resolution Transmission Electron Microscopy and Reflection High-Energy Electron Diffraction. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.2015888893Daí, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley, R.E., (1996) Nature, 384, p. 147Hafner, J.H., Cheung, C.L., Lieber, C.M., (1999) Nature, 398, p. 761Hafner, J.H., Cheung, C.L., Oosterkamp, T.H., Lieber, C.M., (2001) J. Phys. Chem. B, 105, p. 743Method for Sharpening Nanotubes Bundles, US Patent 60/145, 427Stevens, R., Nguyen, C., Cassell, A., Delzeit, L., Meyyappan, M., Han, J., (2000) Appl. Phys. Lett., 77, p. 3453Nishijima, H., Akita, S., Nakayama, Y., (1999) Jpn. J. Appl. Phys., 38, p. 7247Nakayama, Y., Nishijima, H., Akita, S., Hohmura, K.I., Yoshimura, S.H., Takeyasu, K., (2000) J. Vac. Sci. Technol. B, 18, p. 661Nishijima, H., Kamo, S., Akita, S., Nakayama, Y., Hohmura, K.I., Yoshimura, S.H., Takeyasu, K., (1999) Appl. Phys. Lett., 74, p. 4061Akita, S., Nishijima, H., Nakayama, Y., Tokumasu, F., Takeyasu, K., (1999) J. Phys. D, Appl. Phys., 32, p. 1044Dai, H., Franklin, N., Han, J., (1998) Appl. Phys. Lett., 73, p. 1508Cooper, E.B., Manalis, S.R., Fang, H., Dai, H., Matsumoto, K., Minne, S.C., Hunt, T., Quate, C.F., (1999) Appl. Phys. Lett., 75, p. 3566Okazaki, A., Akita, S., Nishijima, H., Nakayama, Y., (2000) Jpn. J. Appl. Phys., 39, p. 3744Uchihashi, T., Choi, N., Tanigawa, M., Ashino, M., Sugawara, Y., Nishijima, H., Akita, S., Ishikawa, M., (2000) Jpn. J. Appl. Phys., 39, pp. L887Wong, S.S., Woolley, A.T., Odom, T.W., Huang, J.L., Kim, P., Vezenov, D.V., Lieber, C.M., (1998) Appl. Phys. Lett., 73, p. 3465Nguyen, C.V., Chao, K.J., Stevens, R.M.D., Delzeit, L., Cassell, A., Han, J., Meyyappan, M., (2001) Nanotechnology, 12, p. 363Larsen, T., Moloni, K., Flack, F., Eriksson, M.A., Lagally, M.G., Black, C.T., (2002) Appl. Phys. Lett., 80, p. 1996Snow, E.S., Campbell, P.M., Novak, J.P., (2002) Appl. Phys. Lett., 80, p. 2002D. Nakabayashi, P. C. Silva, V. Rodrigues, and D. Ugarte, (unpublished)Klapetek, P., Ohlídal, I., (2003) Ultramicroscopy, 94, p. 19Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., (1992) Numerical Recipes in C, the Art of Scientific Computing, , http://www.nr.com, Cambridge University Press, Second EditionGutiérrez, H.R., Cotta, M.A., De Carvalho, M.M.G., (2001) Appl. Phys. Lett., 79, p. 385

    Hybrid Reflections In Ingap/gaas(001) By Synchrotron Radiation Multiple Diffraction

    No full text
    Hybrid reflections (HRs) involving substrate and layer planes (SL type) [Morelhão et al., Appl. Phys. Lett. 73 (15), 2194 (1998)] observed in Chemical Beam Epitaxy (CBE) grown InGaP/GaAs(001) structures were used as a three-dimensional probe to analyze structural properties of epitaxial layers. A set of (002) rocking curves (ω-scan) measured for each 15o in the azimuthal plane was arranged in a pole diagram in φ for two samples with different layer thicknesses (#A - 58 nm and #B - 370 nm) and this allowed us to infer the azimuthal epilayer homogeneity in both samples. Also, it was shown the occurrence of (113) HR detected even in the thinner layer sample. Mappings of the HR diffraction condition (ω:φ) allowed to observe the crystal truncation rod through the elongation of HR shape along the substrate secondary reflection streak which can indicate in-plane match of layer/substrate lattice parameters. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.2463544547Avanci, L.H., Cardoso, L.P., Girdwood, S.E., Pugh, D., Sherwood, J.N., Roberts, K.J., (1998) Phys. Rev. Lett., 81, p. 5426Avanci, L.H., Cardoso, L.P., Sasaki, J.M., Girdwood, S.E., Roberts, K.J., Pugh, D., Sherwood, J.N., (2000) Phys. Rev. B, 61, p. 6507dos Santos, A.O., Yaegashi, W.H., Marcon, R., Li, B.B., Gelano, R.V., Cardoso, L.P., Sasaki, J.M., Melo, F.E.A., (2001) J. Phys.: Condens. Matter, 13, p. 10497Almeida, J.M.A., Miranda, M.A.R., Remédios, C.M.R., Melo, F.E.A., Freire, P.T.C., Sasaki, J.M., Cardoso, L.P., Kycia, S., (2003) J. Appl. Crystallogr., 36, p. 1348Almeida, J.M.A., Miranda, M.A.R., Avanci, L.H., de Menezes, A.S., Cardoso, L.P., Sasaki, J.M., (2006) J. Synchrotron Radiat., 13, p. 435de Menezes, A.S., dos Santos, A.O., Almeida, J.M.A., Sasaki, J.M., Cardoso, L.P., (2007) J. Phys.: Condens. Matter, 19, p. 106218Hayashi, M.A., Morelhão, S.L., Avanci, L.H., Cardoso, L.P., Sasaki, J.M., Kretly, L.C., Chang, S.L., (1997) Appl. Phys. Lett., 71 (18), p. 2614Orloski, R.V., Pudenzi, M.A.A., Hayashi, M.A., Swart, J.W., Cardoso, L.P., (2005) J. Mol. Catal. A, Chem., 228, p. 177Morelhão, S.L., Cardoso, L.P., Sasaki, J.M., de Carvalho, M.M.G., (1991) J. Appl. Phys., 70 (5), p. 2589Morelhão, S.L., Avanci, L.H., Hayashi, M.A., Cardoso, L.P., Collins, S.P., (1998) Appl. Phys. Lett., 73 (15), p. 2194Renninger, M., (1937) Z. Phys., 106, p. 141Morelhão, S.L., Cardoso, L.P., (1993) J. Appl. Phys., 73, p. 4218(1993) Solid State Commun, 88, p. 465Morelhão, S.L., Domagala, J.Z., (2007) J. Appl. Crystallogr., 40, p. 456Takagi, S., (1962) Acta Crystallogr, 15, p. 1311Takagi, S., (1969) J. Phys. Soc. Jpn., 26, p. 1239Taupin, D., (1964) Bull. Soc. Fr. Mineral. Cristallogr., 87, p. 469Pesek, A., Kastler, P., Palmetshofer, L., Hauzenberger, F., Juza, P., Faschinger, W., Lischka, K., (1993) J. Phys. D, Appl. Phys., 26, pp. A17
    corecore