668 research outputs found

    Predicting Structural and Optical Properties of Hollow-Core Photonic Bandgap Fibers from Second Stage Preforms

    No full text
    We propose a simple theory based on mass conservation that allows accurate prediction of guidance properties in hollow-core photonic bandgap fibers (HC-PBGF) from knowledge of the second stage preforms from which the fibers are drawn

    Manufacturing of high performance hollow core microstructured optical fibres

    No full text
    Although fabrication technologies of Microstructured Optical Fibres (MOFs) fibres have matured at an impressive rate over the past ten years, these fibres are widely perceived as "challenging" and some key issues are still outstanding in order to improve their manufacturability. One such issue revolves around methods to improve structural control during the fibre draw. Structural control is of particular importance for certain types of microstructured fibres, such as hollow core Photonic Bandgap Fibres (PBGFs) and Anti-resonant (AR) fibres (also known as Kagome fibres). These fibres exploit resonant and/or anti-resonant guidance mechanisms and thus their transmission properties depend on the structure to a much greater extent as compared to conventional fibres. Hollow core MOFs have been identified as promising media for applications such as low latency (speed-of-light-in-air) communications, fibre sensing (chemical sensing, gyroscopes, sensors based on distributed scattering), laser power delivery (both high-peak and high average). However the successful implementation of these fibres in advanced demonstrators leading to commercial devices has been hindered by high cost, poor consistency and, in some instances, by lack of fibres with sufficiently good properties. We are actively investigating methods to improve structural control during the fibre draw and methods for scaling up the current manufacturing yields. Here we present recent progress in the fabrication hollow core MOFs at the Optoelectronics Research Centre; in particular, we report the fabrication of ultra-low loss (~few dB/km), wide bandwidth (>150nm) Photonic Bandgap Fibres and anti-resonant Hexagram Fibres with broadband low loss transmission suitable for the delivery of extremely high peak optical powers

    Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fibers

    No full text
    First experimental wavelength scaling in 19-cell core HC-PBGF indicates that the minimum loss waveband occurs at longer wavelengths than previously predicted. Record low loss (2.5dB/km) fibers operating around 2µm and gas-purging experiments are also reported

    The shape of SN 1993J re-analysed

    Get PDF
    SN 1993J is one of the best-studied Type IIb supernovae. Spectropolarimetric data analyses were published over two decades ago at a time when the field of supernova spectropolarimetry was in its infancy. Here, we present a new analysis of the spectropolarimetric data of SN 1993J and an improved estimate of its interstellar polarization (ISP) as well as a critical review of ISP removal techniques employed in the field. The polarization of SN 1993J is found to show significant alignment on the q − u plane, suggesting the presence of a dominant axis and therefore of continuum polarization. We also see strong line polarization features, including H β, He I λ5876, H α, He I λ6678, He I λ7065, and high velocity (HV) components of He I λ5876 and H α. SN 1993J is therefore the second example of a stripped-envelope supernova, alongside iPTF13bvn, with prominent HV helium polarization features, and the first to show a likely HV H α contribution. Overall, we determine that the observed features can be interpreted as the superposition of anisotropically distributed line forming regions over ellipsoidal ejecta. We cannot exclude the possibility of an off-axis energy source within the ejecta. These data demonstrate the rich structures that are inaccessible if solely considering the flux spectra but can be probed by spectropolarimetric observations. In future studies, the new ISP corrected data can be used in conjunction with 3D radiative transfer models to better map the geometry of the ejecta of SN 1993J

    Phase field analysis of eutectic breakdown.

    Get PDF
    In this paper an isotropic multi-phase-field model is extended to include the effects of anisotropy and the spontaneous nucleation of an absent phase. This model is derived and compared against a published single phase model. Results from this model are compared against results from other multi-phase models, additionally this model is used to examine the break down of a regular two dimensional eutectic into a single phase dendritic front

    Spectropolarimetry of the 2012 outburst of SN 2009ip: A bi-polar explosion in a dense, disc-like CSM

    Get PDF
    We present a sequence of eight spectropolarimetric observations monitoring the geometric evolution of the late phase of the major 2012 outburst of SN 2009ip. These were acquired with the Focal Reducer and Low Dispersion Spectrograph polarimeter mounted on European Southern Observatory VLT. The continuum was polarized at 0.3-0.8 per cent throughout the observations, showing that the photosphere deviated substantially from spherical symmetry by 10-15 per cent. Significant line polarization is detected for both hydrogen and helium at high velocities. The similarity in the polarized signal between these elements indicates that they form in the same location in the ejecta. The line polarization (p ~ 1-1.5 per cent) at low velocities revealed the presence of a highly aspherical hydrogen- and helium-rich circumstellar medium (CSM). Monte Carlo simulations of the observed polarimetry were performed in an effort to constrain the shape of the CSM. The simulations imply that the polarimetry can be understood within the framework of a disc-like CSM inclined by 14° ± 2° out of the line of sight, obscuring the photosphere only at certain epochs. The varying temporal evolution of polarization at high and low velocities indicated that the fast-moving ejecta expanded with a preferred direction orthogonal to that of the CSM

    Decoherence and CPT Violation in a Stringy Model of Space-Time Foam

    Full text link
    I discuss a model inspired from the string/brane framework, in which our Universe is represented as a three brane, propagating in a bulk space time punctured by D0-brane (D-particle) defects. As the D3-brane world moves in the bulk, the D-particles cross it, and from an effective observer on D3 the situation looks like a ``space-time foam'' with the defects ``flashing'' on and off (``D-particle foam''). The open strings, with their ends attached on the brane, which represent matter in this scenario, can interact with the D-particles on the D3-brane universe in a topologically non-trivial manner, involving splitting and capture of the strings by the D0-brane defects. Such processes are described by logarithmic conformal field theories on the world-sheet. Physically, they result in effective decoherence of the string matter on the D3 brane, and as a result, of CPT Violation, but of a type that implies an ill-defined nature of the effective CPT operator. Due to electric charge conservation, only electrically neutral (string) matter can exhibit such interactions with the D-particle foam. This may have unique, experimentally detectable, consequences for electrically-neutral entangled quantum matter states on the brane world, in particular the modification of the pertinent EPR Correlation of neutral mesons in a meson factory.Comment: 41 pages Latex, five eps figures incorporated. Uses special macro

    1.45 Tbit/s low latency data transmission through 19-cell hollow core photonic band gap fibre

    No full text
    We report transmission of 37 x 40 Gbit/s C-band channels over 250 m of hollow core band gap fibre, at 99.7% the speed of light in vacuum. BER penalty below 1 dB as compared to back-to-back was measured across the C-band

    The evolution of the 3D shape of the broad-lined Type Ic SN 2014ad

    Get PDF
    We present optical spectropolarimetry and spectroscopy of the broad-lined Type Ic (Ic-bl) SN 2014ad. Our spectropolarimetric observations cover seven epochs, from −2 to 66 d after V-band maximum, and the spectroscopic data were acquired from −2 to +107 d. The photospheric velocity estimates showed ejecta speeds similar to those of SN 1998bw and other SNe associated with gamma-ray bursts (GRBs). The spectropolarimetric data revealed aspherical outer ejecta and a nearly spherical interior. The polarization associated with O I λ7774 and the Ca II infrared triplet suggests a clumpy and highly asymmetrical distribution of these two species within the ejecta. Furthermore, it was shown that the two line forming regions must have been spatially distinct and oxygen was found to have higher velocities than calcium. Another oxygen line-forming region was also identified much closer to the core of the explosion and distributed in a spherical shell. It is difficult to reconcile the geometry of the deeper ejecta with a jet driven explosion, but the high ejecta velocities of SN 2014ad are typical of those observed in SNe Ic-bl with GRBs and the behaviour of the oxygen and calcium line-forming regions is consistent with fully jet-driven models. The metallicity of the host galaxy of SN 2014ad was also calculated and compared to that of the hosts of other SNe Ic-bl with and without GRBs, but due to the overlap in the two populations no conclusion could be drawn

    Low loss, tightly coilable, hollow core photonic bandgap fibers for mid-IR applications

    No full text
    We describe low loss (50dB/km at 3.3µm) and low bend sensitivity mid-IR hollow core-photonic bandgap fiber. Gas sensing applications are highlighted by a methane spectrum recorded in our fiber
    • …
    corecore