6,046 research outputs found

    Nano-apatite/polymer composites: mechanical and physicochemical characteristics

    Get PDF
    Hydrothermally synthesized acicular nano-apatite (Nap) was used as filler to make composites with a polyethylene glycol/poly(butylene terephthalate) (PEG/PBT) block copolymer (Polyactive™70:30). The Nap had a particle diameter of 9–25 nm and a length of 80–200 nm. The mechanical properties and the physiochemical characteristics of the composites, such as Young's modulus, swelling degree in water and the calcification behaviour, have been determined. It was found that Nap had a strong ability to promote the calcification of composites when incorporated into Polyactive 70:30, while poly(acrylic acid) (PAA) coating of Nap had an adverse effect on the calcification of composites, presumably due to the formation of complexes between PAA and PEG segments. Nap had a prominent stiffening effect for Polyactive 70:30 in the dry state, but had a poor stiffening effect for composites in an aqueous environment due to the hygroscopic nature and/or the formation of aggregates. PAA coating on Nap had almost no additional effect on the mechanical properties of composites either in the dry state or in an aqueous environment. To reinforce the polymer by Nap, achieving a more homogeneous dispersion of Nap in the polymer matrix and surface modifications to render the powders less hygroscopic appear to be necessary

    On the system-based design for steel frames using inelastic analysis

    Get PDF
    Design by inelastic analysis of overall system behaviour is permitted in several steel design specifications worldwide (e.g., the American Specification AISC360-10 and the Australian Specification AS4100-1998). Advanced inelastic analysis is better able to capture the system behavioural characteristics as they currently are understood. This paper presents a case study of the design of three planar steel structures using different design methods, including the Direct Analysis method in AISC360-10, the inelastic design method in AISC360-10, and the inelastic method (“advanced analysis”) in AS4100. The effects of structural ductility (capacity of load redistribution) and failure modes on the design results are discussed

    Charged bottomonium-like structures Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650)

    Full text link
    The observation of two charged bottomonium-like structures Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650) has stimulated extensive studies of the properties of Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650). In this talk, we briefly introduce the research status of Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650) combined with our theoretical progress.Comment: 6 pages, 1 table, 5 figures. Plenary talk given at the international conference The Fifth Asia-Pacific Conference on Few-Body Systems in Physics 2011 (APFB2011), Seoul, Republic of Korea, 22-26 August 201

    Implementation of Discrete Capability into the enhanced Multipoint Approximation Method for solving mixed integer-continuous optimization problems

    Get PDF
    Multipoint approximation method (MAM) focuses on the development of metamodels for the objective and constraint functions in solving a mid-range optimization problem within a trust region. To develop an optimization technique applicable to mixed integer-continuous design optimization problems in which the objective and constraint functions are computationally expensive and could be impossible to evaluate at some combinations of design variables, a simple and efficient algorithm, coordinate search, is implemented in the MAM. This discrete optimization capability is examined by the well established benchmark problem and its effectiveness is also evaluated as the discreteness interval for discrete design variables is increased from 0.2 to 1. Furthermore, an application to the optimization of a lattice composite fuselage structure where one of design variables (number of helical ribs) is integer is also presented to demonstrate the efficiency of this capability

    Placenta percreta following first trimester miscarriage

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135586/1/ijgo140.pd

    Structural Appraisal of Two Steel Tanks Filled at Low Liquid Level

    Full text link

    Quasiparticle spectrum in a nearly antiferromagnetic Fermi liquid: shadow and flat bands

    Full text link
    We consider a two-dimensional Fermi liquid in the vicinity of a spin-density-wave transition to a phase with commensurate antiferromagnetic long-range order. We assume that near the transition, the Fermi surface is large and crosses the magnetic Brillouin zone boundary. We show that under these conditions, the self-energy corrections to the dynamical spin susceptibility, χ(q,ω)\chi (q, \omega), and to the quasiparticle spectral function function, A(k,ω)A(k, \omega), are divergent near the transition. We identify and sum the series of most singular diagrams, and obtain a solution for χ(q,ω)\chi(q, \omega) and an approximate solution for A(k,ω)A(k, \omega). We show that (i) A(k)A(k) at a given, small ω\omega has an extra peak at k=kF+πk = k_F + \pi (`shadow band'), and (ii) the dispersion near the crossing points is much flatter than for free electrons. The relevance of these results to recent photoemission experiments in YBCOYBCO and Bi2212Bi2212 systems is discussed.Comment: a sign and amplitude of the vertex renormalization and few typos are correcte

    Electrode Polarization Effects in Broadband Dielectric Spectroscopy

    Get PDF
    In the present work, we provide broadband dielectric spectra showing strong electrode polarization effects for various materials, belonging to very different material classes. This includes both ionic and electronic conductors as, e.g., salt solutions, ionic liquids, human blood, and colossal-dielectric-constant materials. These data are intended to provide a broad data base enabling a critical test of the validity of phenomenological and microscopic models for electrode polarization. In the present work, the results are analyzed using a simple phenomenological equivalent-circuit description, involving a distributed parallel RC circuit element for the modeling of the weakly conducting regions close to the electrodes. Excellent fits of the experimental data are achieved in this way, demonstrating the universal applicability of this approach. In the investigated ionically conducting materials, we find the universal appearance of a second dispersion region due to electrode polarization, which is only revealed if measuring down to sufficiently low frequencies. This indicates the presence of a second charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form (see "Data Conservancy"

    Implications of Space-Time foam for Entanglement Correlations of Neutral Kaons

    Full text link
    The role of CPTCPT invariance and consequences for bipartite entanglement of neutral (K) mesons are discussed. A relaxation of CPTCPT leads to a modification of the entanglement which is known as the ω\omega effect. The relaxation of assumptions required to prove the CPTCPT theorem are examined within the context of models of space-time foam. It is shown that the evasion of the EPR type entanglement implied by CPTCPT (which is connected with spin statistics) is rather elusive. Relaxation of locality (through non-commutative geometry) or the introduction of decoherence by themselves do not lead to a destruction of the entanglement. So far we find only one model which is based on non-critical strings and D-particle capture and recoil that leads to a stochastic contribution to the space-time metric and consequent change in the neutral meson bipartite entanglement. The lack of an omega effect is demonstrated for a class of models based on thermal like baths which are generally considered as generic models of decoherence
    • …
    corecore