496 research outputs found
Dyon Spectrum in Generic N=4 Supersymmetric Z_N Orbifolds
We find the exact spectrum of a class of quarter BPS dyons in a generic N=4
supersymmetric Z_N orbifold of type IIA string theory on K3\times T^2 or T^6.
We also find the asymptotic expansion of the statistical entropy to first
non-leading order in inverse power of charges and show that it agrees with the
entropy of a black hole carrying same set of charges after taking into account
the effect of the four derivative Gauss-Bonnet term in the effective action of
the theory.Comment: LaTeX file, 39 pages; minor change
Threshold configurations in the presence of Lorentz violating dispersion relations
A general characterization of lower and upper threshold configurations for
two particle reactions is determined under the assumptions that the single
particle dispersion relations E(p) are rotationally invariant and monotonic in
p, and that energy and momentum are conserved and additive for multiple
particles. It is found that at a threshold the final particle momenta are
always parallel and the initial momenta are always anti-parallel. The
occurrence of new phenomena not occurring in a Lorentz invariant setting, such
as upper thresholds and asymmetric pair production thresholds, is explained,
and an illustrative example is given.Comment: 5 pages, 3 figure
Background Dependent Lorentz Violation: Natural Solutions to the Theoretical Challenges of the OPERA Experiment
To explain both the OPERA experiment and all the known phenomenological
constraints/observations on Lorentz violation, the Background Dependent Lorentz
Violation (BDLV) has been proposed. We study the BDLV in a model independent
way, and conjecture that there may exist a "Dream Special Relativity Theory",
where all the Standard Model (SM) particles can be subluminal due to the
background effects. Assuming that the Lorentz violation on the Earth is much
larger than those on the interstellar scale, we automatically escape all the
astrophysical constraints on Lorentz violation. For the BDLV from the effective
field theory, we present a simple model and discuss the possible solutions to
the theoretical challenges of the OPERA experiment such as the Bremsstrahlung
effects for muon neutrinos and the pion decays. Also, we address the Lorentz
violation constraints from the LEP and KamLAMD experiments. For the BDLV from
the Type IIB string theory with D3-branes and D7-branes, we point out that the
D3-branes are flavour blind, and all the SM particles are the conventional
particles as in the traditional SM when they do not interact with the
D3-branes. Thus, we not only can naturally avoid all the known phenomenological
constraints on Lorentz violation, but also can naturally explain all the
theoretical challenges. Interestingly, the energy dependent photon velocities
may be tested at the experiments.Comment: RevTex4, 14 pages, minor corrections, references adde
Dyon Spectrum in N=4 Supersymmetric Type II String Theories
We compute the spectrum of quarter BPS dyons in freely acting Z_2 and Z_3
orbifolds of type II string theory compactified on a six dimensional torus. For
large charges the result for statistical entropy computed from the degeneracy
formula agrees with the corresponding black hole entropy to first non-leading
order after taking into account corrections due to the curvature squared terms
in the effective action. The result is significant since in these theories the
entropy of a small black hole, computed using the curvature squared corrections
to the effective action, fails to reproduce the statistical entropy associated
with elementary string states.Comment: LaTeX file, 32 pages; v2:minor change
Smooth Paths on Three Dimensional Lattice
A particular class of random walks with a spin factor on a three dimensional
cubic lattice is studied. This three dimensional random walk model is a simple
generalization of random walk for the two dimensional Ising model. All critical
diffusion constants and associated critical exponents are calculated. Continuum
field theories such as Klein-Gordon, Dirac and massive Chern-Simons theories
are constructed near several critical points.Comment: 7 pages,NUP-A-94-
Lorentz breaking Effective Field Theory and observational tests
Analogue models of gravity have provided an experimentally realizable test
field for our ideas on quantum field theory in curved spacetimes but they have
also inspired the investigation of possible departures from exact Lorentz
invariance at microscopic scales. In this role they have joined, and sometime
anticipated, several quantum gravity models characterized by Lorentz breaking
phenomenology. A crucial difference between these speculations and other ones
associated to quantum gravity scenarios, is the possibility to carry out
observational and experimental tests which have nowadays led to a broad range
of constraints on departures from Lorentz invariance. We shall review here the
effective field theory approach to Lorentz breaking in the matter sector,
present the constraints provided by the available observations and finally
discuss the implications of the persisting uncertainty on the composition of
the ultra high energy cosmic rays for the constraints on the higher order,
analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on
"Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references
adde
Corrections to flat-space particle dynamics arising from space granularity
The construction of effective Hamiltonians describing corrections to flat
space particle dynamics arising from the granularity of space at very short
distances is discussed in the framework of an heuristic approach to the
semiclassical limit of loop quantum gravity. After some general motivation of
the subject, a brief non-specialist introduction to the basic tools employed in
the loop approach is presented. The heuristical semiclassical limit is
subsequently defined and the application to the case of photons and spin 1/2
fermions is described. The resulting modified Maxwell and Dirac Hamiltonians,
leading in particular to Planck scale corrections in the energy-momentum
relations, are presented. Alternative interpretations of the results and their
limitations, together with other approaches are briefly discussed along the
text. Three topics related to the above methods are reviewed: (1) The
determination of bounds to the Lorentz violating parameters in the fermionic
sector, obtained from clock comparison experiments.(2) The calculation of
radiative corrections in preferred frames associated to space granularity in
the framework of a Yukawa model for the interactions and (3) The calculation of
synchrotron radiation in the framework of the Myers-Pospelov effective theories
describing Lorentz invariance violations, as well as a generalized approach to
radiation in Planck scale modified electrodynamics. The above exploratory
results show that quantum gravity phenomenology provides observational guidance
in the construction of quantum gravity theories and opens up the possibility of
probing Planck scale physics.Comment: 49 pages, 6 figures and 4 tables. Extended version of the talk given
at the 339-th WE-Heraeus-Seminar: Special Relativity, will it survive the
next 100 years?, Potsdam, february 200
Entropy Function for Non-Extremal Black Holes in String Theory
We generalize the entropy function formalism to five-dimensional and
four-dimensional non-extremal black holes in string theory. In the near horizon
limit, these black holes have BTZ metric as part of the spacetime geometry. It
is shown that the entropy function formalism also works very well for these
non-extremal black holes and it can reproduce the Bekenstein-Hawking entropy of
these black holes in ten dimensions and lower dimensions.Comment: 19 pages, no figure, JHEP3 style, to appear in JHE
Performance Test Results of the NASA-457M v2 Hall Thruster
Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63
Black Hole Microstates and Attractor Without Supersymmetry
Due to the attractor mechanism, the entropy of an extremal black hole does
not vary continuously as we vary the asymptotic values of various moduli
fields. Using this fact we argue that the entropy of an extremal black hole in
string theory, calculated for a range of values of the asymptotic moduli for
which the microscopic theory is strongly coupled, should match the statistical
entropy of the same system calculated for a range of values of the asymptotic
moduli for which the microscopic theory is weakly coupled. This argument does
not rely on supersymmetry and applies equally well to nonsupersymmetric
extremal black holes. We discuss several examples which support this argument
and also several caveats which could invalidate this argument.Comment: 50 pages; references adde
- …
