973 research outputs found

    Impact of surface discharge plasmas on performance of a metallized film capacitor

    Get PDF
    Surface breakdown discharges are one probable failure mechanism of metallized polymeric film capacitors used in power systems, traction drives, and other technological applications. To assess whether surface breakdown discharges may undergo considerable elongation on the electrode surface to affect significantly capacitor performance, an equivalent electric circuit model is developed for metallized polymer film capacitors under the thermal equilibrium condition. With the aid of a surface field gradient mechanism, propagation of surface plasmas is studied and the necessary condition for their possible elongation is obtained. Numerical examples of a metallized film capacitor are used to demonstrate that surface breakdown plasmas and their elongation are unlikely to affect capacitor performance in a significant fashion. Then the generic problem of plasma propagation is restudied under thermally nonequilibrium conditions. Based on a heat conduction formulation in the one-dimensional limit, a temperature gradient mechanism is proposed to explain the possible elongation of breakdown plasmas on an electrode surface. Numerical examples are again used to deduce that thermally nonequilibrium surface plasmas are unlikely to evolve into catastrophic flashover arcs to fail film capacitors

    Defining the need for surgical intervention following a snakebite still relies heavily on clinical assessment: The experience in Pietermaritzburg, South Africa

    Get PDF
    Background. This audit of snakebites was undertaken to document our experience with snakebite in the western part of KwaZulu-Natal (KZN) Province, South Africa (SA).Objective. To document our experience with snakebite in the western part of KZN, and to interrogate the data on patients who required some form of surgical intervention.Methods. A retrospective study was undertaken at the Pietermaritzburg Metropolitan Trauma Service, Pietermaritzburg, SA. The Hybrid Electronic Medical Registry was reviewed for the 5-year period January 2012 - December 2016. All patients admitted to the service for management of snakebite were included.Results. The offending snake is rarely identified, and the syndromic approach is now the mainstay of management. Most envenomations seen during the study period were cytotoxic, presenting with painful progressive swelling (PPS). We did not see any purely neurotoxic or haemotoxic envenomations. Antivenom is required for a subset of patients. The indications are essentially PPS that increases by >15 cm over an hour, PPS up to the elbow or knee after 4 hours, PPS of the whole limb after 8 hours, threatened airway, shortness of breath, associated clotting abnormalities and compartment syndrome. If no symptoms have manifested within 1 hour of a snakebite, clinically significant envenomation is unlikely to have occurred. Antivenom is associated with a high rate of anaphylaxis and should only be administered when absolutely indicated, preferably in a high-care setting under continuous monitoring. The need for surgery is less well defined. Urgent surgery is indicated for compartment syndrome of the limb, which is a potentially life- and limb-threatening condition. Its diagnosis is usually made clinically, but this is difficult in snakebites. Morbidity and cost increase dramatically once fasciotomy is required, as evidenced by much longer hospital stay. There is frequently a degree of cross-over between cytotoxicity and haemotoxicity in envenomations that require fasciotomy, which means that fasciotomy may result in catastrophic bleeding and should be preceded by the administration of antivenom, especially in patients with a low platelet count or a high international normalised ratio. Physiological and biochemical markers are unhelpful in assessing the need for fasciotomy. Objective methods include measurement of compartment pressures and ultrasound.Conclusion. The syndromic management of snakebite is effective and safe. There is a high incidence of anaphylactic reactions to antivenom, and its administration must be closely supervised. In our area we overwhelmingly see cytotoxic snakebites with PPS. Surgery is often needed, and we need to refine our algorithms in terms of deciding on surgery

    Fermi Surfaces of Diborides: MgB2 and ZrB2

    Full text link
    We provide a comparison of accurate full potential band calculations of the Fermi surfaces areas and masses of MgB2 and ZrB2 with the de Haas-van Alphen date of Yelland et al. and Tanaka et al., respectively. The discrepancies in areas in MgB2 can be removed by a shift of sigma-bands downward with respect to pi-bands by 0.24 eV. Comparison of effective masses lead to orbit averaged electron-phonon coupling constants lambda(sigma)=1.3 (both orbits), lambda(pi)=0.5. The required band shifts, which we interpret as an exchange attraction for sigma states beyond local density band theory, reduces the number of holes from 0.15 to 0.11 holes per cell. This makes the occurrence of superconductivity in MgB2 a somewhat closer call than previously recognized, and increases the likelihood that additional holes can lead to an increased Tc.Comment: 7 pages including 4 figure

    Constraints from TcT_c and the isotope effect for MgB2_2

    Full text link
    With the constraint that Tc=39T_c = 39 K, as observed for MgB2_2, we use the Eliashberg equations to compute possible allowed values of the isotope coefficient, β\beta. We find that while the observed value β=0.32\beta= 0.32 can be obtained in principle, it is difficult to reconcile a recently calculated spectral function with such a low observed value

    Effects of Al doping on the structural and electronic properties of Mg(1-x)Al(x)B2

    Full text link
    We have studied the structural and electronic properties of Mg(1-x)Al(x)B2 within the Virtual Crystal Approximation (VCA) by means of first-principles total-energy calculations. Results for the lattice parameters, the electronic band structure, and the Fermi surface as a function of Al doping for 0<x<0.6 are presented. The ab initio VCA calculations are in excellent agreement with the experimentally observed change in the lattice parameters of Al doped MgB2. The calculations show that the Fermi surface associated with holes a the boron planes collapses gradually with aluminum doping and vanishes for x=0.56. In addition, an abrupt topological change in the sigma-band Fermi surface was found for x=0.3. The calculated hole density correlates closely with existing experimental data for Tc(x), indicating that the observed loss of superconductivity in Mg(1-x)Al(x)B2 is a result of hole bands filling.Comment: 4 pages (revtex) and 4 figures (postscript

    Structural and Superconducting Transitions in Mg_{1-x}Al_{x}B_2

    Full text link
    From systematic ab initio calculations of the alloy system Mg_{1-x}Al_{x}B_2, we find a strong tendency for the formation of a superstructure characterized by Al-rich layers. We also present a simple model, based on calculated energies and an estimate of the configurational entropy, which suggests that the alloy has two separate concentration regimes of phase separation, with critical points near x = 0.25 and x = 0.75. These results, together with calculations of electronic densities of states in several ionic arrangements, give a qualitative explanation for the observed structural instabilities, as well as the x-dependence of the superconducting T_c for x<0.6.Comment: 4 pp./4 figs.; revisions in responce to Referee comment

    First-Principles Calculation of the Superconducting Transition in MgB2 within the Anisotropic Eliashberg Formalism

    Full text link
    We present a study of the superconducting transition in MgB2 using the ab-initio pseudopotential density functional method and the fully anisotropic Eliashberg equation. Our study shows that the anisotropic Eliashberg equation, constructed with ab-initio calculated momentum-dependent electron-phonon interaction and anharmonic phonon frequencies, yields an average electron-phonon coupling constant lambda = 0.61, a transition temperature Tc = 39 K, and a boron isotope-effect exponent alphaB = 0.31 with a reasonable assumption of mu* = 0.12. The calculated values for Tc, lambda, and alphaB are in excellent agreement with transport, specific heat, and isotope effect measurements respectively. The individual values of the electron-phonon coupling lambda(k,k') on the various pieces of the Fermi surface however vary from 0.1 to 2.5. The observed Tc is a result of both the raising effect of anisotropy in the electron-phonon couplings and the lowering effect of anharmonicity in the relevant phonon modes.Comment: 4 pages, 3 figures, 1 tabl

    Multiband model for tunneling in MgB2 junctions

    Get PDF
    A theoretical model for quasiparticle and Josephson tunneling in multiband superconductors is developed and applied to MgB2-based junctions. The gap functions in different bands in MgB2 are obtained from an extended Eliashberg formalism, using the results of band structure calculations. The temperature and angle dependencies of MgB2 tunneling spectra and the Josephson critical current are calculated. The conditions for observing one or two gaps are given. We argue that the model may help to settle the current debate concerning two-band superconductivity in MgB2.Comment: minor corrections, published in Phys. Rev. B 65, 180517(R) (2002

    Streamer Wave Events Observed in Solar Cycle 23

    Full text link
    In this paper we conduct a data survey searching for well-defined streamer wave events observed by the Large Angle and Spectrometric Coronagraph (LASCO) on-board the Solar and Heliospheric Observatory (SOHO) throughout Solar Cycle 23. As a result, 8 candidate events are found and presented here. We compare different events and find that in most of them the driving CMEs ejecta are characterized by a high speed and a wide angular span, and the CME-streamer interactions occur generally along the flank of the streamer structure at an altitude no higher than the bottom of the field of view of LASCO C2. In addition, all front-side CMEs have accompanying flares. These common observational features shed light on the excitation conditions of streamer wave events. We also conduct a further analysis on one specific streamer wave event on 5 June 2003. The heliocentric distances of 4 wave troughs/crests at various exposure times are determined; they are then used to deduce the wave properties like period, wavelength, and phase speeds. It is found that both the period and wavelength increase gradually with the wave propagation along the streamer plasma sheet, and the phase speed of the preceding wave is generally faster than that of the trailing ones. The associated coronal seismological study yields the radial profiles of the Alfv\'en speed and magnetic field strength in the region surrounding the streamer plasma sheet. Both quantities show a general declining trend with time. This is interpreted as an observational manifestation of the recovering process of the CME-disturbed corona. It is also found that the Alfv\'enic critical point is at about 10 R⊙_\odot where the flow speed, which equals the Alfv\'en speed, is ∼\sim 200 km s−1^{-1}

    Surface and Image-Potential States on the MgB_2(0001) Surfaces

    Get PDF
    We present a self-consistent pseudopotential calculation of surface and image-potential states on MgB2(0001)MgB_2(0001) for both BB-terminated (B−tB-t) and MgMg-terminated (Mg−tMg-t) surfaces. We find a variety of very clear surface and subsurface states as well as resonance image-potential states n=1,2 on both surfaces. The surface layer DOS at EFE_F is increased by 55% at B−tB-t and by 90% at the Mg−tMg-t surface compared to DOS in the corresponding bulk layers.Comment: 3 pages, 6 figure
    • …
    corecore