116 research outputs found

    Error Rate of the Kane Quantum Computer CNOT Gate in the Presence of Dephasing

    Full text link
    We study the error rate of CNOT operations in the Kane solid state quantum computer architecture. A spin Hamiltonian is used to describe the system. Dephasing is included as exponential decay of the off diagonal elements of the system's density matrix. Using available spin echo decay data, the CNOT error rate is estimated at approsimately 10^{-3}.Comment: New version includes substantial additional data and merges two old figures into one. (12 pages, 6 figures

    Limits on the monopole magnetic field from measurements of the electric dipole moments of atoms, molecules and the neutron

    Full text link
    A radial magnetic field can induce a time invariance violating electric dipole moment (EDM) in quantum systems. The EDMs of the Tl, Cs, Xe and Hg atoms and the neutron that are produced by such a field are estimated. The contributions of such a field to the constants, χ\chi of the T,P-odd interactions χeNs/s\chi_e {\bf N} \cdot {\bf s}/s and χNNI/I\chi_N {\bf N} \cdot {\bf I}/I are also estimated for the TlF, HgF and YbF molecules (where s{\bf s} (I{\bf I}) is the electron (nuclear) spin and N{\bf N} is the molecular axis). The best limit on the contact monopole field can be obtained from the measured value of the Tl EDM. The possibility of such a field being produced from polarization of the vacuum of electrically charged magnetic monopoles (dyons) by a Coulomb field is discussed, as well as the limit on these dyons. An alternative mechanism involves chromomagnetic and chromoelectric fields in QCD.Comment: Uses RevTex, 16 pages, 4 postscript figures. An explanation of why there is no orbital contribution to the EDM has been added, and the presentation has been improved in genera

    Atomic diffraction from nanostructured optical potentials

    Full text link
    We develop a versatile theoretical approach to the study of cold-atom diffractive scattering from light-field gratings by combining calculations of the optical near-field, generated by evanescent waves close to the surface of periodic nanostructured arrays, together with advanced atom wavepacket propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.

    CP violation

    Get PDF
    The salient features of CP-violating interactions in the standard electroweak theory and in a few of its popular extensions are discussed. Moreover a brief overview is given on the status and prospects of searches for CP non-conservation effects in low and high energy experiments.Comment: 28 pages, Lectures given at the 37th Winter School on Particle Physics, Schladming, Austria, 199

    Minutes-duration optical flares with supernova luminosities

    Get PDF
    In recent years, certain luminous extragalactic optical transients have been observed to last only a few days1. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae), whose timescale is weeks2. Some short-duration transients, most notably AT2018cow (ref. 3), show blue optical colours and bright radio and X-ray emission4. Several AT2018cow-like transients have shown hints of a long-lived embedded energy source5, such as X-ray variability6,7, prolonged ultraviolet emission8, a tentative X-ray quasiperiodic oscillation9,10 and large energies coupled to fast (but subrelativistic) radio-emitting ejecta11,12. Here we report observations of minutes-duration optical flares in the aftermath of an AT2018cow-like transient, AT2022tsd (the ‘Tasmanian Devil’). The flares occur over a period of months, are highly energetic and are probably nonthermal, implying that they arise from a near-relativistic outflow or jet. Our observations confirm that, in some AT2018cow-like transients, the embedded energy source is a compact object, either a magnetar or an accreting black hole

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)
    corecore