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Propagation of ultracold atoms through bends in waveguides

M. W. J. Bromley* and B. D. Esry†

Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
~Received 21 July 2003; published 9 October 2003!

The properties of noninteracting, low-energy atom waves propagating through circular bends are investi-
gated. Time-independent quantum mechanical calculations using various simple harmonic oscillator based
confining potentials explore the transmission, reflection, and mode-transfer probabilities over a range of ener-
gies. It is shown that at low energies single-mode wave propagation dominates. At higher energies, however,
excitation and transmission of other modes become significant. Notably, reflections generally remain negligible
even for sharply curved bends. The behavior near the mode thresholds and their associated resonances is
emphasized.
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I. INTRODUCTION

Recent years have seen exciting advances in the siz
the ultracold atomic physics playground. The ability of e
perimentalists to trap and transport atoms above microc
surfaces@1#, in magnetic guides@2#, and among optical ele
ments@3,4# is opening up a vista of atomic physics opport
nities both fundamental and practical@5–7#.

Given the volume of experimental ‘‘atom chip’’ researc
and that the basic principles are now well known@8–13#,
there are surprisingly few theoretical investigations. Rec
fundamental studies have focused on understanding he
and decoherence loss during matter wave propagation a
a surface@14–16#, and conditions for adiabatic wave-pack
propagation through micrometer scale potentials@17,18#.
Theoretical studies of specific atom chip devices include
cusing an atomic beam@19#, quantum point contacts@20#,
interferometers@21–24#, in-coupling ~loading precooled at-
oms onto the chip! @25,26#, as well as a QED scheme fo
single-atom detection@27#.

While matter wave optics requires all of the analogs
electromagnetic optical elements, it is also important to p
duce efficient guides to transport atoms between one com
nent and the next in a confining potential to avoid diffractio
For the present paper we investigate the second simp
atom optical element, the circular waveguide bend. Be
have been investigated experimentally@28# and theoretically
@29#. These studies, however, involved atoms at high te
peratures~i.e., propagation velocities on the order of 10 m
and de Broglie wavelengths much less than the character
transverse trapping scales!, so that the motion of atom
through the waveguide could be described classically.

The success of recent experiments in creating Bo
Einstein condensates~BEC’s! above microchip surfaces@30–
33# as well as their controlled, single-mode~excitationless!
propagation@34–36# is rapidly heading toward full, ‘‘on
chip’’ coherent control of matter waves. In this work w
are primarily interested in single-mode propagation
low-energy atom waves with atomic densities such t
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atom-atom interactions can be neglected and the~linear!
Schrödinger equation is applicable. This is the regime
particular interest to experimentalists investigating atom
terferometry@7#. Previously, stationary solutions of a BE
propagating through a circular bend were obtained by so
ing the~nonlinear! Schrödinger equation using a weak attra
tive potential to approximate the effect of a circular be
@37#. Some of the limitations of this approximation are di
cussed in this paper.

As far as the fundamental wave mechanics is concern
much can be learnt from the extensive literature on acous
electromagnetic, and electron waveguides and devices.
example, it is well known that hard-walled quantum ben
@38,39# and bulges@40# with Dirichlet boundary conditions
when connected toinfinite leads possess bound states that
not exist classically. For the present paper we borrow hea
from the physics previously seen in studies of ballistic el
tron propagation through waveguide bends@41–43#. From a
theoretical point of view, the circular bend results in a se
rable time-independent problem. This allows for an unco
plicated examination of the quantum mechanics of a circu
bend, in particular, an investigation of the range of energ
where single-mode wave propagation is maintained thro
bends with different confining potentials. Since most ato
chip devices will demand the guiding of atoms through
bent potential of some form, the results of this paper sho
also apply more broadly.

II. DETAILS OF THE CALCULATIONS

Here we consider atoms that are prepared in a magn
weak-field-seeking state and are trapped above the surfa
a two-dimensional magnetic potential minimum resulti
from wires laid out on a planar substrate. While there ar
variety of experimental wire configurations in use@1,11#, we
consider only a wire configuration that does not require
bias magnetic field established across the entire atom
surface. It is well known that a global bias field raises a
lowers the potential minima as atoms propagate throug
bent waveguide@28,29#. Experimentally, this is avoided by
using multiwire configurations where the bias field is gen
ated locally by the wires lying parallel to the main guidin
wire~s!, and thus the bias field tracks through the bend wi
©2003 The American Physical Society09-1
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out affecting the potential minima.
To keep the model simple and general we also choos

neglect a bias field in the direction of propagation, whi
means that in principle the individual atoms composing
matter wave are susceptible to Majorana transitions. Th
transitions can occur when atoms traverse a magnetic-fi
free region of space~i.e., the center of the waveguide!. Dur-
ing this time there is some probability that the atomic s
will flip from a weak-field-seeking state to a strong-fiel
state, so that the atom is no longer trapped in the gu
While this would be a significant loss mechanism, there
many such experimental difficulties currently identified f
ultracold atoms propagating above a room temperature
face @1,15#. For the present paper, we simply choose to
nore all such effects, maintaining the emphasis on the w
mechanics.

The removal of global bias fields simplifies our theoretic
approach considerably; we need not consider any varia
of the strength of the guiding potential either perpendicu
to or parallel with the motion of the atoms. Consequently,
waveguide potentials are separable between the directio
propagation and the two transverse directions. Divid
space into the three regions shown in Fig. 1, the connec
leads are described by Cartesian coordinates (x,y,z), and the
circular bend by polar coordinates (r,y,f). The origin is at
the same point for all regions, and the bend curves in
(x,z) and (r,f) planes through an anglef0.

In keeping with our simplifications regarding the bi
fields, we consider an idealized trapping potential. In pr
tice, guiding potentials are quadratic near the minima atr0
and y50, so we employ simple harmonic oscillator~SHO!
potentials:

VI~x,y,z!5Vx~x!1Vy~y!

5
1

2
mv2@~x2r0!21ly

2y2#, z<0,

VII~r,y,f!5Vx~r!1Vy~y!

5
1

2
mv2@~r2r0!21ly

2y2#, 0<f<f0 ,

~1!

VIII ~x8,y,z8!5Vx~x8!1Vy~y!

5
1

2
mv2@~x82r0!21ly

2y2#, z8>0.

The present treatment is limited to cases in which the tra
verse spread of the wave function is smaller thanr0. In fact,
the wave function is excluded from the shaded region of F
1 by imposing infinite hard wall boundary conditions. Th
width of the vertical dimension of the waveguide~in y) is
similarly chosen. For the results to be as general as poss
oscillator units are used throughout the rest of this pa
Energies are given in units of\v, while lengths are in units
of the oscillator widthA\/mv.
04360
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As the guiding potential of Eq.~1! is separable, so is the
Schrödinger equation in each region. All of the physics—
mode mixing, reflection, etc.—is thus entirely a result
matching multichannel wave functions at the boundaries
tween regions. We perform this time-independent match
in essentially the same manner as can be found in ne
every quantum mechanics text for one-dimensional~1D!
problems. Such matching has been described previousl
the context of ballistic electron transport through 2D qua
tum wires@41,43–45#, so a brief description is given here a
it extends to a 3D waveguide. The wave functions in ea
region are constructed using plane waves as

C I~x,y,z!5(
a

Fa~x,y!@aaeikaz1bae2 ikaz#,

C II~r,y,f!5(
b

Qb~r,y!@cbeikbf1dbe2 ikbf#, ~2!

C III ~x8,y,z8!5(
a

Fa~x8,y!@gaeikaz81hae2 ikaz8#.

The transverse eigenstates of the two leads,Fa(x,y)
5znx

(x)jny
(y), are determined from the eigenvalue equ

tions

F2
1

2

d2

dx2
1Vx~x!Gznx

~x!5Enx
znx

~x!,

~3!

F2
1

2

d2

dy2
1Vy~y!Gjny

~y!5Eny
jny

~y!,

FIG. 1. Coordinate definitions for the three regions~I,II,III ! of a
two-dimensional bend through an anglef0. The dashed line at a
distance ofr0 denotes the SHO potential minimum. The shad
area denotes the region that the interface matching method ca
sensibly describe.
9-2
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which are solved using a basis ofB splines. Thus for a given
total energyE the a5(nx ,ny) lead mode haska

252(E
2Enx

2Eny
). For ka

2.0 the mode propagates, with th

~known! incoming flux of that mode given bykauaau2 and
kauhau2. Both kaubau2 and kaugau2 correspond to the~un-
known! outgoing flux of theka

2.0 mode. For evanescen
modeska

2,0, which demandsaa5ha50, while ba andga

are the~unknown! coefficients of the exponential decay ou
ward from the bend. Defining the number of horizontal le
modes asNx and the number of vertical modes asNy , then
the combined number of lead modes included in each ca
lation is Na5NxNy . Since in our simplified model the po
tential in the vertical directionVy(y) is the same throughou
the leads and the bend, the quantum numberny is a good
quantum number and is thus conserved.

In polar coordinates, the bend Schro¨dinger equation is
separable@41#, and theb5(nr ,ny) bend transverse eigen
statesQb(r,y)5wnr

(r)jny
(y) are determined for eachny

P@0,Ny21# by solving

F2
1

2 S d2

dr2
1

1

r

d

dr D 1„Vx~r!2~E2Eny
!…Gwnr

~r!

52
knr

2

2

wnr
~r!

r2
. ~4!

The resultant eigenvalues are2kb
2/2, and the quantity\kb

is the angular momentum of each mode in the bend~to a
good approximation it is given by\kb'\kbr0). Note that
the angular momentum need not be quantized since the
subtends an angle less than 2p. This implies that the usua
single-valued condition on the wave function is absent;
stead, the total energyE is fixed and thenkb is determined.
While the exact eigensolutions of Eq.~4! for a hard walled
bend withVx(r)50 are known to be Bessel functions@39#,
the solutions with harmonic confinement are not know
Equation~4! is thus solved numerically using aB-spline ba-
sis. The number of bend modes included in each calcula
is Nb5NrNy . The infinite hard wall boundary conditions i
r are applied atr5p and r52r02p, ensuring that the
wave function of each region is well defined at the inn
waveguide boundary.

To determine the 2Na12Nb unknown coefficients of Eq
~2! ~i.e., $ba%, $ga%, $cb%, and $db%), the wave functions
and their first derivatives are matched at interface I-II:

C I~x,y,z!uz505C II~r,y,f!uf50 and

]C I~x,y,z!

]z U
z50

5
1

r

]C II~r,y,f!

]f U
f50

, ~5!

and also at interface II-III:
04360
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C III ~x8,y,z8!uz8505C II~r,y,f!uf5f0
and

]C III ~x8,y,z8!

]z8
U

z850

5
1

r

]C II~r,y,f!

]f U
f5f0

. ~6!

These matching conditions are converted into manage
algebraic equations by substituting the expressions in Eq~2!
and projecting onto each of theNa transverse lead wave
functionsFa(x,y). This projection produces 4Na equations
which, when combined with the restrictionNa5Nb , ensures
a well-defined solution.

The final matching equations are succinctly displayed
we first define a series of matrices. The lead and bend
menta are grouped as

k5S k1 0

k2

�

0 kNa

D and

k5S k1 0

k2

�

0 kNb

D . ~7!

Also required are lead-bend overlap matricesx andx8 with
matrix elements

xab5^FauQb& and xab8 5 K FaUQb

r L . ~8!

As an example, we give the slightly strange interface mat
ing integral

xab8 5E E znx
~x!jny

~y!wmr
~r!jmy

~y!/r dxdy, ~9!

where, due to the coordinate definitions,x5r on the bound-
aries. The 4Na inhomogeneous linear equations are th
written in matrix form as

S 21 0 x x

0 21 eikf0x e2 ikf0x

k 0 k x8 2k x8

0 k 2keikf0x8 ke2 ikf0x8

D S B

G

C

D

D
5S A

k H

A

k H

D . ~10!

Although it was not indicated in Eq.~2!, the coefficients
actually carry an additional index to indicate the incide
channel. The coefficients can then be organized into inco
9-3
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ing lead coefficient matricesA and H, where each column
corresponds to incidence in a different propagation chan
By symmetry, incidence from region I gives the same res
as incidence from region III, so the incoming propagati
modes are chosen to always be from region I, i.e.,H50.
While we are specifically interested in propagation of t
lowest mode@in which caseA would simplify to the column
vectora5(1,0, . . . ,0) oflengthNa], we also calculate how
the lowestNa8 states~with ka

2.0) propagate through th
bend. Furthermore, the matrix elements are chosen asAaa8
5daa8 , i.e., only single-mode incoming waves are cons
ered in this paper. The unknown outgoing lead coefficie
are grouped into the matricesB and G, with the unknown
bend coefficients grouped intoC and D. Each of the col-
umns of these unknown matrices is a solution correspond
to a specific incoming mode given by each column ofA.

For the propagating modes in the lead~i.e., ka
2.0) the

transmission and reflection probabilities are calculated as
ratio of the outgoing to the incoming flux, i.e.,

uT f i u25
ugf u2kf

uai u2ki

and uR f i u25
ubf u2kf

uai u2ki

. ~11!

As mentioned previously,ny is conserved for the potential
of interest here. With no mode mixing between mod
with different ny , for simplicity, we adopt the notation
uT f i u25Tnx f ,nxi

ny ~with similar notation for reflection!.

The computational limitations of this simple matchin
scheme as applied to electron transport through hard wa
circular guides has been thoroughly investigated in the li
of tight bend curvature, and even for bend angles gre
than 360°—‘‘spiral’’-type guides@43#. Essentially, numerica
problems arise when including strongly closed chann
~large ukbu) in the calculation, which generate exponentia
large terms in the set of linear equations, restricting the
tension of (Na5)Nb→`. The ansatz used by Lin and Jaf
@43# offers one method for avoiding these difficulties. Ne
ertheless, we kept the simple matching scheme for two
sons. First, as the wave propagates through the bend
centrifugal motion acts to push the wave function radia
outward fromr5r0, but the SHO guiding potential work
against this shift by localizing the propagating wave arou
r5r0. Matching the disjointed eigenfunctions across t
lead-bend interfaces is then somewhat less dramatic tha
seen for the tight electron waveguide bends, and hence fe
channels are necessary in the present calculations for
equate convergence. Second, the maximum bend angle
amined here is 180°, and since the exponential matrix
ments of Eq.~10! containkbf0 terms, the exponential term
included in here are smaller than those required for
greater than 360° guides.

The transmission and reflection probability calculatio
were first validated for various geometries by repeating p
lished 2D bend calculations@41,43,44,46#. Convergence of
the numerical solutions with respect to the number
channels was monitored using the unitarity conditi
04360
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( fTnx f ,nxi

ny 1Rnx f ,nxi

ny 51, for each of the initial modes. Thi

condition was maintained at better than 1 part in 1010 for all
calculations reported here.

III. RESULTS

We focus primarily on the casef0590° with r054p,
and the SHO potential used is anisotropic withly50.64 in
Eq. ~1!. This choice is intended to mimic experimental ato
chip configurations in which the confining magnetic potent
is slightly weaker along the vertical direction~perpendicular
to the chip surface! @1,11#.

A. Eigenmodes

The energy eigenspectrum of this anisotropic potentia
shown in Table I. For the leads, both the horizontal~x! and
vertical ~y! eigenmodes are simply those of a on
dimensional simple harmonic oscillator. The horizontal mo
energies in the bend (r) are determined by settingk50 and

TABLE I. The energy spectrum of the 1D eigenmodes tra
verse to the direction of wave propagation for a circular bend w
an anisotropic 2D simple harmonic oscillator potential (ly50.64)
centered atr054p. The horizontal lead (x), horizontal bend (r),
and vertical~y! eigenmodes are separable, with up to 25 mod
included in the calculations. All energies are given in oscilla
units.

n Ex~horiz! Ey~vert! Er~horiz bend!

0 0.5000000 0.4000000 0.4992008
1 1.5000000 1.2000000 1.4991852
2 2.5000000 2.0000000 2.4991692
3 3.5000000 2.8000000 3.4991526
4 4.5000000 3.6000000 4.4991355
9 9.5000000 7.6000000 9.4990405
19 19.500000 15.600000 19.498788
24 24.500000 19.600038 24.498618

FIG. 2. The bend eigenfunction probability densitiesuwnr
(r)u2

of Eq. ~4! with nr50,1,9. Two sets of curves are given. First th
solid lines are the threshold (knr

50) eigensolutions~the corre-
sponding energy eigenvalues are given in theEr column of Table I!.
Second, the dashed lines are the correspondingE527 eigensolu-
tions with the vertical mode fixed asny50. Generally the bend
eigenfunctions slosh outward as the energy is increased.
9-4
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Eny
50 and finding the resultant eigenenergies of Eq.~4!.

These results are thus independent ofny , and are also shown
in Table I. The effect of having boundary conditions impos
is barely seen in the marginal deviation of theny524 verti-
cal mode eigenenergy from that of the ideal SHO eigen
ergy.

To provide some idea of what the horizontal bend eig
functions look like, the threshold eigenfunctions (k50) are
shown fornr50,1,9 as the solid lines in Fig. 2, bearing
similarity to the~not shown, but well known! nr50,1,9 ideal
SHO solutions. However, the asymmetry of the thresh
bend eigenfunctions inr is produced by the attractived/dr
term in the Schro¨dinger equation in the bend@Eq. ~4!#. The
nr50,1,9 horizontal eigenfunctions forE527 ~with ny
50) are shown as the dashed lines in Fig. 2. As the energ
increased, the bend eigenfunctions increasingly slosh
ward from the SHO minima atr054p. There is also an
asymmetry in theE527 eigenfunctions, i.e.,uwnr

(r)u2 is

larger for r,4p than for r.4p. This is due to theEÞ0
eigenstate normalization, i.e.,^wnr

u1/r2uwnr
&51. Of impor-

tance for matching the wave functions, in which these be
functions are mapped onto lead SHO eigenfunctionsznx

(x)

that are perfectly symmetric and localized aboutx5r0, even
for low propagation energies the eigenstates in the bend
nificantly overlap with the center of the SHO waveguide.

The propagation threshold energy of each transve
mode corresponding to (nx ,ny) in the leads and (nr ,ny) in
the bend is shown in Table II. It is evident in both Table
and II that the energy of propagation in the bend is alw
slightly lower than that of the corresponding lead mode.

B. Bound states

That a bend connected to infinite leads supports a we
bound state@38,39# can be understood from the bend lowe
ing the energy thresholds relative to the leads. In ot
words, these bound states occur when a wave has en
energy to propagate in the bend (kb

2.0), but remains below
the propagation threshold in the leads~i.e., ka

2,0). It has
been found that 2D, hard walled, circular electr

TABLE II. The combined 2D transverse~horizontal1vertical!
energy thresholds of the lead and bend modes, given the s
waveguide geometry as in Table I. Note that only modes with
same vertical number (ny) can couple when propagating throug
the bend. All energies are given in oscillator units.

Mode (nx ,ny) E~lead! E~bend!

0, 0 0.9000000 0.8992008
0, 1 1.7000000 1.6992008
1, 0 1.9000000 1.8991852
0, 2 2.5000000 2.4992008
1, 1 2.7000000 2.6991852
2, 0 2.9000000 2.8991692
9, 9 17.100000 17.098951

19, 19 35.100000 35.098788
24, 24 44.100038 44.098656
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waveguides with an angle less than 360° support at most
bound state@43#. For the 3D case, sinceny is a good quan-
tum number in our model, one bound state exists for e
ny , with the energy of each bound state located between
lead and the bend energy thresholds for the mode (0,ny).
Moreover, becauseny enters Eq.~4! only to shift the zero of
the energy, every bound state has the same binding ene

Each bound state calculation thus requires the condi
aa5ha50 for all modes. The 4Na34Na matrix M in Eq.
~10!, however, cannot be diagonalized sinceE is manifested
nonlinearly in the matrix elements. Thus, to solve the se
linear equations an additional constraint is required to ens
that the trivial solution (cb5db5ba5ga50) is avoided.
The simplest method is to use a two-step approach: first,
energy is varied until the condition det(M )50 is satisfied,
yielding the bound state energyEb @41#; second, the wave
function coefficients are calculated using thisEb and adding
an arbitrary constraint, e.g.,c0,ny

50.25, to Eq.~10!, where

ny is the quantum number corresponding to the bound s
located atEb . This extra equation results in an overdete
mined system which, when solved with a least-squares p
cedure, finds the nontrivial solution. In essence, the equa
c0,ny

Þ0 acts as an arbitrary wave function normalization.
It should be noted that, due to the exponential terms of

strongly closed channels, using double-precision arithmet
is impossible to locate the exact energyEb at which
det(M )50. Instead, the energy is scanned for the location
which there is a dip in det(M ) over a few orders of magni
tude. The bound state calculations were validated by rep
ducing the results for 2D hard walled circular electr
waveguides with varyingf0 and r0 @41,43,44,46#. For the
3D SHO 90° bend withr054p ~with Na51033 modes!,
the lowest three bound states were located atEb
50.899 903 451 8, 1.699 903 451 8, and 2.499 903 45
which gives the same binding energy 0.000 096 548 2 re
tive to each of their lowest propagation thresholds as
pected. The 3D bend with SHO confinement, and only
single channel included in the calculation, gives binding
an energy of 0.000 102 685 9. A small amount of mode c
pling is thus needed to describe the circular bend bo
states due to the interface mismatching in Eq.~8! between
wnr

(r) and the SHO lead eigenfunctions ofznx
(x).

The Eb that minimizes det(M ) also corresponds exactl
to the energy at which the least-squares residual of the ma

me
e

FIG. 3. Theny50 bound state probability densityuc(x,y,z)u2

of a 90° SHO bend withr054p taken as a slice throughy50. The
bend, which is the regionx.0 andz.0, is seen to have a sym
metric ~but very weakly bound! bound state, strongly confined t
the position of the SHO minima atr054p.
9-5
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M ~supplemented withc0,ny
50.25) is the smallest. It is ob

served that the coefficients (ba andga) become equal at this
energy, consistent with a bound state of even symm
about the midpoint of the bend atf5f0/2. For the 3D SHO
90° bend withr054p the probability density of theny50
bound state through ay50 slice can be seen in Fig. 3. Sinc
the binding energy is so small, the bound state extends a
way into the leads—which is the basis of theinfinite leads
assumption. However, the transverse profile of the w
function shown in Fig. 3 is consistent with the domina
mode beingnx50.

These results can be contrasted with those given b
simple approximation. It has been demonstrated that a ci
lar bend can be approximated by a ‘‘straight,’’ attractive,
nite square well in the direction of propagation@39,42#. De-
fining the bend curvature asC5f0 /z051/r0 ~where the
bend lengthz05r0f0), the effective square bend potential
given in Cartesian coordinates by

VII~x,y,z!5
1

2
mv2@~x2r0!21ly

2y2#2
C 2

8
, 0<z<z0 .

~12!

Furthermore, given that the angle of the bends under con
eration is less than 360°, the approximate attractive fin
square well supports only one bound state@43#, and simple
~transcendental! expressions for the bound state energy c
be applied@42,47#. Numerically locating the unknown mo
mentumq inside the potential well from

A2muVz~z!u

\2
2q25q tanS qz0

2 D ~13!

gives the bound state energy fromq252m$uVz(z)u
2Eb%/\

2.0. This approximate model for thef0590° bend
with r054p results inqz0/250.366 610, giving a binding
energy of 0.000 101 7. As further program validation, t
same attractive square well potential was run, giv
0.000 101 704 7 relative to the mode~0,0! threshold ofE
50.9 @there is no mode coupling in this model, so a sing
(Na5131) channel calculation suffices#.

Leboeuf and Pavloff@37# have applied the single-chann
square well model to study bound states of many interac
atoms in a bend. Using the Gross-Pitaevskii equation, t
showed that in the presence of atom-atom interaction
bound state still exists. Given typical experimental para
eters they further estimated the number of87Rb atoms that
such circular bends can support in the bound state to b
the order of 7–70. Since the present method explicitly
sumes no atom-atom interactions, it is beyond the scop
this work to verify their results.

C. Scattering „transmission, reflection, and mode-transfer…

Figures 4 and 5 display the core results of this paper;
transmission and reflection probabilities of the 90° bend w
r054p at low energies 0.9,E,5.0. While there are 16
modes energetically allowed at the end of this energy ran
here the focus is on when the incoming matter wave is
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tially in the ground state, with the transmission probabiliti
for the ~0,0! mode given in Fig 4~a!. Transmission probabili-
ties for the first two excited states as the incoming modes
also given; the~1,0! mode results are also shown in Fig. 4~a!,
while the ~0,1! mode results are shown separately in F
4~b!. Note that for these calculationsNa51032.

The important line in Fig. 4~a! is the T0,0
0 result, that is,

the probability of a ground state~0,0! matter wave propagat
ing through the bend and exiting in the same ground s
mode. AtE54.9, the mode~4,0! becomes energetically ac
cessible, thus over the energy range seen in Figs. 4 an
there are four other lead modes that mode~0,0! can couple
with. From the threshold of mode~0,0! propagation atE
50.9, T0,0

0 rapidly rises to perfect transmission as the ene
is increased. Unit transmission is predictably maintain
while the energy remains below the threshold of the fi
accessible excited mode~1,0! at E51.9. As the energy is

FIG. 4. Transmission and mode-conversion probabilitiesTnx f ,nxi

ny

for a 90° SHO bend withr054p as a function of energy~in os-
cillator units!. The incoming (nx ,ny) modes are restricted to th
three lowest-energy modes given in Table II, with the~0,0! and
~1,0! modes shown in~a!, and the~0,1! mode shown separately in
~b!. Of primary interest is the transmission probabilityT0,0

0 , which
is the probability of entering in the (nxi50,ny50) ground state
mode, and exiting in the same mode (nx f50,ny50).

FIG. 5. Reflection probabilitiesRnx f ,nxi

ny for a 90° SHO bend

with r054p as a function of energy~in oscillator units!. The in-
coming (nx ,ny) modes are restricted to the lowest three mod
given in Table II. Apart from threshold and resonant spikes,
reflection probabilities are significantly smaller than the cor
sponding transmission probabilities seen in Fig. 4.
9-6



e

th

ir
te
e

g-
o
d
H
ga
d

as
a

rit
ng

ng
y
ld
e
a

th
o
2

fle
s

o
an

a
.

ili-
seen
o
es
he

the

as

n-
ro-

the
pen

e
he
the

ond

ell
mis-
l or
ell

the
-
to-
just

osi-
but

h the

ive

e

ce
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increased aboveE51.9, a small oscillation due to mod
transfer can be seen inT1,0

0 . Once the third mode~2,0! be-
comes energetically open atE52.9, T0,0

0 decreases more
sharply, primarily because of the mode transfer seen in
increase ofT2,1

0 and to a lesser extent inT3,1
0 . To demonstrate

that mode transfer remains a small effect below the th
mode threshold, other bend parameters are examined la

Importantly, though, the reflection probabilities for th
ny50 andny51 modes shown in Fig. 5 are generally insi
nificant across the entire energy range, suggesting that m
transfer is the dominant source of loss from single-mo
propagation at low energies. These results for the 3D S
waveguide potential are consistent with previous investi
tions of ballistic 2D electron propagation through ben
where the walls are ‘‘soft’’@46#. In that study, instead of the
confining potential suddenly going to an infinite value, it w
found that even a large but finite potential waveguide w
reduces the amount of both reflection and mode mixing.

Another feature seen in both Figs. 4 and 5 is the simila
in the transmission and reflection probability of maintaini
propagation in the ground (nx50) state of eachny mode.
T0,0

1 , for example, exhibits the same characteristic cha
with energy asT0,0

0 . Both rapidly rise to unity as the energ
is increased above their respective propagation thresho
However, the probability of mode transfer by the bend b
comes substantial at energies where two higher modes
energetically open to the incoming wave. This supports
result that, withny as a good quantum number, the physics
the 3D circular bend can effectively be considered as a
problem.

D. Thresholds and resonances

The sharp resonance spikes in the transmission and re
tion probabilities seen in Figs. 4 and 5 near the threshold
propagation are examined in depth in this section. Many
the features characterized for the case of 2D electron tr
port @42–44#, such as the behavior near mode thresholds
well as the characteristics of the resonances, apply here

FIG. 6. TransmissionT0,0
0 and reflection probabilitiesR0,0

0 for a
90° SHO bend withr054p at energies just above the mode~0,0!
propagation threshold atE50.9 ~all energies in oscillator units!.
The crosses are the transmission probabilities given by Eq.~14!
resulting from approximating the circular bend with the attract
square well potential of Eq.~13!.
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The behavior of the transmission and reflection probab
ties near the ground state propagation threshold can be
in Fig. 6, with the transmission probability rapidly rising t
unity from theE50.9 threshold. Also included as the cross
on Fig. 6 are calculations resulting from approximating t
bend with the attractive square potential of Eq.~12!. These
are calculated using the incoming propagation energy of
ground state wave,Ek5E2E(nx51)2E(ny51) , then k2

52mEk /\2 and q252m@Ek1uVz(z)u#/\2. The single-
channel transmission probability can then be written
@42,47#

T0,0
0 5

~2kq!2

~2kq!2cos2~qz0!1~q21k2!2sin2~qz0!
. ~14!

The results of this approximation in Fig. 6 clearly demo
strate that the simple 1D approximation to the bend rep
duces the physics of the bend remarkably well while
energy of the bend is such that there is only a single o
channel in the leads.

DespiteT0,0
0 rapidly reaching unity from threshold, ther

are minor resonant oscillations while the energy is still in t
single-channel regime. These oscillations are best seen in
reflection probabilities of bothR0,0

0 andR0,0
1 of Fig. 5 below

their first excitation thresholds. These oscillations corresp
to those resulting from the sinusoidal terms in Eq.~14!. Gen-
erally, wave scattering from an attractive 1D square w
potential results in such resonances, where perfect trans
sion occurs when the width of the well matches an integra
half-integral number of de Broglie wavelengths in the w
@47,48#.

The transmission and reflection probabilities near
mode~1,0! threshold (E51.9) are shown in Fig. 7. The be
havior of T1,1

0 shows a smooth increase from threshold
ward unity. The energy range also covers the resonance
below this threshold where total reflection of mode~0,0! oc-
curs. As was the case for the bound state energy, the p
tions of the resonances are above the bend threshold,
marginally below the lead threshold~see Table II!. This reso-
nance is thus a Feshbach resonance generated throug

FIG. 7. TransmissionTnx f ,nxi

ny and reflection probabilitiesRnx f ,nxi

ny

for a 90° SHO bend withr054p at energies surrounding the mod
~1,0! propagation threshold atE51.9 ~all energies in oscillator
units!. Mode ~0,1! is not shown as it is unaffected by the presen
of the ny50 modes.
9-7
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M. W. J. BROMLEY AND B. D. ESRY PHYSICAL REVIEW A68, 043609 ~2003!
coupling of the incoming propagating mode to the~1,0!
mode—which is energetically open in the bend, but close
the leads. Note that, due to its different quantum number,
~0,1! mode—while it is open throughout this energ
range—is unaffected by the action related to modes w
ny50, and is not shown in Fig. 7.

The resonance and mode transfer (T1,0
0 ) effects seen in

Fig. 7 cannot be seen in models based on the simple at
tive square well potential of Eq.~12!. This model completely
ignores mode mixing since it uses the same transverse o
lation frequency in the bend as in the lead. The wave sim
propagates faster in the bend, which is an adequate app
mation at single-channel energies. For a realistic circu
bend, at higher energies the wave propagates at increas
further distances from the SHO minima, resulting in an
creased mismatching of the lead-bend eigenfunctions
thus more mode transfer.

The behavior near the mode~2,0! threshold atE52.9 can
be seen in Fig. 8. The Feshbach resonance ofT1,1

0 , at which
energy there is total reflection, indicates that mode~1,0!
couples strongly with the~2,0! mode in the bend. Mode
~0,0!, however, is only slightly perturbed by the presence
mode~2,0! propagating in the bend, which corresponds to
slight increase inR0,0

0 and R1,0
0 , and a variation inT1,0

0 .
Above the ~2,0! threshold,T2,2

0 approaches unity with the
same characteristic as that of modes~0,0! and~1,0! shown in
Figs. 6 and 8. This small effect of the mode~2,0! threshold
on mode~0,0!, and the dominant mixing between adjace
modes, i.e.,T2,1

0 @T2,0
0 , can both be understood in terms

the overlap of the interface wave functions; the mode~0,0!
wavefunction in the lead only weakly overlaps with mo
~2,0! in the bend. Since there is no mode coupling within t
waveguide, all of the mode mixing occurs through th
matching.

The energy width of these Feshbach resonances is
small that it may be extremely difficult to experimental
observe a dip in the transmission to zero with a wave pac
that has a finite energy spread. As a theoretical side note

FIG. 8. TransmissionTnx f ,nxi

ny and reflection probabilitiesRnx f ,nxi

ny

for a 90° SHO bend withr054p at energies surrounding the mod
~2,0! propagation threshold atE52.9 ~all energies in oscillator
units!. Due to symmetry the mode-transfer probabilitiesT1,0

0

5T0,1
0 , R1,0

0 5R0,1
0 , T2,0

0 5T0,2
0 , R2,0

0 5R0,2
0 , T2,1

0 5T1,2
0 , and R2,1

0

5R1,2
0 . The ny51 modes are not shown since they are unaffec

by the presence of theny50 modes.
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exact energy position of the resonances also correspond
the energy where det(M ) of Eq. ~10! has a minimum.

E. Dependance on waveguide geometry

In this final section, the dependence of transmission
both angle and curvature is examined. The effects of vary
bend parameters for the 2D electron waveguide has b
investigated by Sols and Macucci@41#. In particular, their
results relating the low-energy transmission probability
different bend angles and curvatures are qualitatively s
here.

To demonstrate the effects of varying the bend angle
the transmission and reflection probabilities, we again us
circular bend withr054p. Both the lead and bend propa
gation energies seen in Table II remain constant as the a
is varied. It is, however, worthwhile to restrict the energy
below that of the mode~2,0! threshold~at E52.9), so that
only two propagating modes couple. Figure 9 shows tra
mission, reflection, and mode-conversion probabilities fo
SHO bend at a fixedE52.34 ~with Na51032 modes!,
which was chosen to be near the local maximum of the m
transfer probabilityT1,0

0 seen in Fig. 4. As expected, atf0

50° there is perfect transmission~i.e., there is no bend!. At
all angles, reflections continue to play an insignificant ro
compared to the mode transfer probabilityT1,0

0 , which dis-
plays periodic oscillation. Depending on the bend ang
mode conversion reaches a maximum of 4%, demonstra
that, in general, mode transfer remains a small effect w
the energy of the incoming wave remains below the mo
~2,0! threshold.

When only two channels couple, the critical anglesfc at
which theT1,0

0 mode-conversion minima occur can be pr
dicted by requiring that the mode~0,0! and~1,0! path lengths
coincide:

~k (0,0)2k (1,0)!fc52pn, ~15!

with n50,1,2, . . . . For theabove geometry withE52.34,
using the computed valuesk (0,0)521.424 and k (1,0)

d

FIG. 9. TransmissionTnx f ,nxi

ny and reflection probabilitiesRnx f ,nxi

ny

for a SHO bend withr054p at a fixed energyE52.34 ~in oscil-
lator units! as a function of bend anglef0 ~in degrees!. Only the
lowest three modes in Table II are open at this energy. Note
T1,0

0 'T0,1
0 , and for mode~0,1! only R0,0

1 is shown sinceT0,0
1 '1.
9-8
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511.665, this estimate givesfc50°,36.89°,73.78°,
110.7°, . . . in agreement with the positions of theT1,0

0

minima shown in Fig. 9. Furthermore, using a simple a
proximation for the bend kinetic energy, i.e.,k (nr ,ny)

2

'2r0
2(E2E(nr ,ny)), along with the bend thresholds give

by Table II, givesfc50°,37.8°,75.5°,113.3°, in reasonab
agreement with Fig. 9.

Finally, and perhaps most relevant to experiments, Fig
shows the transmission probability of the ground state m
for a f0590° bend with the radius of curvature varied b
tween the relatively tight bend used throughout this pa
(r054p), an intermediate bend (r0510p), as well as a
longer bend (r0516p). The energy range was also extend
well beyond that of Fig. 4, up to a maximum ofE530.
Numerical convergence with such a large number of ch
nels energetically open~484 channels atE530) required the
inclusion of Na52531 channels, since onlyny50 modes
are of interest.

At low energies, the behavior of the transmission pro
ability for all curves is virtually identical, with the differen
positions of theT0,0

0 resonances unable to be discerned
Fig. 10. Above the mode~2,0! threshold atE52.9, there are
differences in both the phase and amplitude of theT0,0

0 oscil-
lations. As the energy is increased, the two tightest be
resulted in near 100% mode transfer aroundE'20, and even
for the larger516p bend there is a significant amount
loss through mode transfer in this energy range. As expec
the longer the bend, the more adiabatic is the leap acros
lead-bend interface. Even for large bends, however, the
continuity still impacts the amount of mode transfer at hi
energies. This complete saturation of mode transfer for a
these bends is not only due to the large number of o
channels at these high energies; returning to Fig. 2, as
energy is increased to such high energies, the maximum
the mode~0,0! eigenfunction in the bend is located a lon
distance fromr5r0. There is furthermore almost no overla
of the E527 eigenmode with the center of the waveguid
resulting in complete mismatching at the lead-bend in
faces, leaving no chance of single-mode transmission.
though it is not shown here, it should again be emphasi

FIG. 10. Ground state mode~0,0! transmission probabilitiesT0,0
0

for 90° SHO bends with different radii of curvaturer0 as a function
of energy~in oscillator units!. Virtually all of the ‘‘loss’’ in trans-
mission is due to the transmission of excited modesTnx f,0

0 where
nx f.0.
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that reflections continue to play a minor role in the wa
propagation dynamics at energies above the mode~0,2!
threshold for all these different bend geometries.

IV. CONCLUSIONS

We have shown how to apply the time-independent qu
tum mode-matching method to describe the physics of n
interacting low-energy atom waves propagating through
cular bends. Explorations of the transmission, reflection,
mode-transfer probabilities for different bends over a w
range of energies have found that, while single-mode w
propagation indeed dominates at low energies, at higher
ergies excitation and transmission of other modes are p
sible. Significantly for ‘‘atom chip’’ designers, reflections a
generally negligible even for sharply curved bends.

Matching the bend eigenfunctions to the lead eigenfu
tions across the effective discontinuity at the interfaces
problematic, even for the long bends. It is likely that to o
tain true ‘‘adiabatic’’ wave-packet transport through wav
guide bends, atom chip microstructures should be desig
with a gradual transition from the leads into and out of t
bend. With the recent experimental successes of BEC
ation and controlled propagation above microchip surfac
investigations in the regime of propagation velocities co
parable in energy to the transverse excitation energies sh
also avoid many of the manifestations of mode transfer
amined here.

A majority of the 3D circular bend SHO waveguide r
sults demonstrated here are qualitatively similar to those w
known in the context of electromagnetic waveguides a
ballistic electron transport through quantum wires. T
present paper highlights that the same rich array of phys
such as bound states and Feshbach resonances, will als
pact ultracold atom propagation through waveguides. Ho
ever, as a dampening note, the direct experimental obse
tion of an energetically narrow resonant dip in the wa
transmission that was observed over ten years ago with e
tromagnetic waveguides@49# may prove to be extremely dif
ficult with a matter wave packet propagating through a be

The present results emphasizing conditions for sing
mode wave propagation through circular bends can also
vide some insight into current ultracold atom investigatio
e.g., BEC propagation past a spatial defect in the wavegu
@36#, or the propagation of atoms around a stadium w
straight sides and circular bends@50#, where bound states an
interface discontinuities may occur. The extension of
present time-independent method to treat such geometri
eminently feasible. Furthermore, imperfections and int
atomic collisions provide a mechanism for mode trans
and a time-dependent wave-packet approach that can inc
atom-atom interactions is probably of more interest
present experimental configurations. Both of these theor
cal approaches would also enable the examination of m
complicated and unusual atom chip devices.
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