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Propagation of ultracold atoms through bends in waveguides
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The properties of noninteracting, low-energy atom waves propagating through circular bends are investi-
gated. Time-independent quantum mechanical calculations using various simple harmonic oscillator based
confining potentials explore the transmission, reflection, and mode-transfer probabilities over a range of ener-
gies. It is shown that at low energies single-mode wave propagation dominates. At higher energies, however,
excitation and transmission of other modes become significant. Notably, reflections generally remain negligible
even for sharply curved bends. The behavior near the mode thresholds and their associated resonances is

emphasized.
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I. INTRODUCTION atom-atom interactions can be neglected and (thesan

Schralinger equation is applicable. This is the regime of

Recent years have seen exciting advances in the size particular interest to experimentalists investigating atom in-
the ultracold atomic physics playground. The ability of ex-terferometry[7]. Previously, stationary solutions of a BEC

perimentalists to trap and transport atoms above microchipropagating through a circular bend were obtained by solv-
Surface{]_], in magnetic gu|de§2]’ and among Optica| ele- |ng the(nonlineay Schrcdinger equation using a weak attrac-
ments[3,4] is opening up a vista of atomic physics opportu- tive potential to approximate the effect of a circular bend

nities both fundamental and practi¢&l7]. [37]. Some of the limitations of this approximation are dis-
Given the volume of experimental “atom chip” research, cussed in this paper.
and that the basic principles are now well knoyd+13, As far as the fundamental wave mechanics is concerned,

there are surprisingly few theoretical investigations. Recenfuch can be learnt from the extensive literature on acoustic,
fundamental studies have focused on understanding heatif@jectromagnetic, and electron waveguides and devices. For
and decoherence loss during matter wave propagation abogample, it is well known that hard-walled quantum bends
a surfac§14—16, and conditions for adiabatic wave-packet [38,39 and bulgeq40] with Dirichlet boundary conditions
propagation through micrometer scale potentiflg,1§.  Wwhen connected tmfinite leads possess bound states that do
Theoretical studies of specific atom chip devices include fonot exist classically. For the present paper we borrow heavily
Cusing an atomic bearﬁ]_g], quantum poin[ Contact@O], from the phySiCS previously seen in studies of ballistic elec-
interferometer§21—24, in-coupling (loading precooled at- tron propagation through waveguide befd$—43. From a
oms onto the chip[25,26], as well as a QED scheme for theoretical point of view, the circular bend results in a sepa-
single-atom detectiof27]. rable time-independent problem. This allows for an uncom-
While matter wave optics requires all of the analogs ofPlicated examination of the quantum mechanics of a circular
electromagnetic optical elements, it is also important to probend, in particular, an investigation of the range of energies
duce efficient guides to transport atoms between one compdavhere single-mode wave propagation is maintained through
nent and the next in a confining potential to avoid diffraction.pends with different confining potentials. Since most atom
For the present paper we investigate the second simpleship devices will demand the guiding of atoms through a
atom optical element, the circular waveguide bend. Bend§ent potential of some form, the results of this paper should
have been investigated experimentd®B] and theoretically ~also apply more broadly.
[29]. These studies, however, involved atoms at high tem-
peraturegi.e., propagation velocities on the order of 10 m/s
and de Broglie wavelengths much less than the characteristic
transverse trapping scalesso that the motion of atoms Here we consider atoms that are prepared in a magnetic

II. DETAILS OF THE CALCULATIONS

through the waveguide could be described classically. weak-field-seeking state and are trapped above the surface in
The success of recent experiments in creating Bosea two-dimensional magnetic potential minimum resulting
Einstein condensatéBEC's) above microchip surfacé80—  from wires laid out on a planar substrate. While there are a

33] as well as their controlled, single-modexcitationless  variety of experimental wire configurations in Usgl1], we
propagation[34—3€ is rapidly heading toward full, “on consider only a wire configuration that does not require a
chip” coherent control of matter waves. In this work we bias magnetic field established across the entire atom chip
are primarily interested in single-mode propagation ofsurface. It is well known that a global bias field raises and
low-energy atom waves with atomic densities such thatowers the potential minima as atoms propagate through a
bent waveguidg28,29. Experimentally, this is avoided by
using multiwire configurations where the bias field is gener-
*Electronic address: bromley@phys.ksu.edu ated locally by the wires lying parallel to the main guiding
TElectronic address: esry@phys.ksu.edu wire(s), and thus the bias field tracks through the bend with-
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out affecting the potential minima.

To keep the model simple and general we also choose t(
neglect a bias field in the direction of propagation, which
means that in principle the individual atoms composing the
matter wave are susceptible to Majorana transitions. Thes
transitions can occur when atoms traverse a magnetic-field
free region of spacé.e., the center of the waveguidé®ur-
ing this time there is some probability that the atomic spin
will flip from a weak-field-seeking state to a strong-field-
state, so that the atom is no longer trapped in the guide
While this would be a significant loss mechanism, there are
many such experimental difficulties currently identified for
ultracold atoms propagating above a room temperature suf
face[1,15]. For the present paper, we simply choose to ig-
nore all such effects, maintaining the emphasis on the wavs
mechanics.

The removal of global bias fields simplifies our theoretical
approach considerably; we need not consider any variatiof
of the strength of the guiding potential either perpendicular
to or parallel with the motion of the atoms. Consequently, the FIG. 1. Coordinate definitions for the three regigh#,lll ) of a
waveguide potentials are separable between the direction ¢#o-dimensional bend through an anglg. The dashed line at a
propagation and the two transverse directions. Dividingdistance ofp, denotes the SHO potential minimum. The shaded
space into the three regions shown in Fig. 1, the connectingrea denotes the region that the interface matching method cannot
leads are described by Cartesian coordinateg,£), and the ~ Sensibly describe.
circular bend by polar coordinatep,f/, ). The origin is at
the same point for all regions, and the bend curves in the AS the guiding potential of Eq1) is separable, so is the
(x,z) and (p,¢) planes through an angig,. Schralinger equation in each region. All of the physics—

In keeping with our simplifications regarding the bias mode mixing, reflection, etc.—is thus entirely a result of
fields, we consider an idealized trapping potential. In pracmatching multichannel wave functions at the boundaries be-
tice, guiding potentials are quadratic near the minimaat tween regions. We perform this time-independent matching
andy=0, so we employ simple harmonic oscillat@HO) in essentially the same manner as can be found in nearly

potentials: every quantum mechanics text for one-dimensioffdD)
problems. Such matching has been described previously in
Vi(X,Y,2) =V, (X) + Vy(y) the context of ballistic electron transport through 2D quan-
1) X y

tum wires[41,43-45, so a brief description is given here as
5 s 20 it extends to a 3D waveguide. The wave functions in each
= 5 Mo (X=po)"+Ayy7],  z<0, region are constructed using plane waves as

Vi(p,y, ) =Vy(p) +Vy(y) V(x,y,2)= >, ®,(x,y)[a,e*?+b e k],

1
= Emwz[(P_Po)2+ )\iyz], O0<¢= ¢y,

@ \If..(p,y,¢>=§ O 4(p.y)[cge' s +dge %%, (2)

VIII(X,-yazl):Vx(X,)_l'Vy(y) \PIII(X/ y Z/):E ® (X’ y)[g eikaz’_l_h e—ikaz’]_

1 2 2 2,,2
=§mw [(X"=po)“+Ayy<], z'=0.
The transverse eigenstates of the two leads,(x,y)

o ) ) =, (X)&, (y), are determined from the eigenvalue equa-
The present treatment is limited to cases in which the trans: X Y

verse spread of the wave function is smaller thgnin fact, Yions
the wave function is excluded from the shaded region of Fig. ) .
1 by imposing infinite hard wall boundary conditions. The _ Ed_+\/ ) Zn (O=E, £n (X)

width of the vertical dimension of the waveguidia y) is 24gx2 ¥ Mx Mx ™M

similarly chosen. For the results to be as general as possible, ’ 3)
oscillator units are used throughout the rest of this paper.
Energies are given in units défw, while lengths are in units

of the oscillator widthyA/mew.

= = 5+ Vy(y) | € (V) =En &n, (¥),
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which are solved using a basis Bfsplines. Thus for a given W (X", 2 —0=Yy(p,Y,P)| 4-4, and
total energyE the a=(ny,n,) lead mode haski=2(E 0
2 .
—EnX—E_ny)- Eor k>0 the mode p-ropagates, with the oW (XY, 2") 10%,(p,y, )
(known) incoming flux of that mode given bi,|a,|?> and — T : (6)
k,|/h.|2. Bothk,|b,|? andk,|g,|? correspond to théun- 9z 2-0 P b=

known) outgoing flux of theki>0 mode. For evanescent

modeski<0, which demandsa,,=h, =0, whileb, andg,, These matching conditions are converted into manageable

are the(unknownr coefficients of the exponential decay out- algebraic equations by subsiituting the expressions ir(Zid

ward from the bend. Defining the number of horizontal Iead%nndctggjs%;t'?)? (;nt_?hzacro.git?ﬁ“ rtcr,?jzscvezr&e (Iaeiitivt\)li\ste
modes as\, and the number of vertical modes Mg, then aXo¥). bro) P o €0

the combined number of lead modes included in each calcuV-Vh'Ch’ when combined with the restrictid, = Ng. ensures

lation is N,=N,N,. Since in our simplified model the po- awell-dgfmed solu.t|on. . . . .
tential in tﬁe vexrtiéal directioV,(y) is the same throughout The fmal. matchlng equat|0n§ are succinctly displayed if
the leads and the bend. the <yquantum numheis a good we first define a series of matrices. The lead and bend mo-
Y menta are grouped as
guantum number and is thus conserved.
In polar coordinates, the bend Sctilger equation is ky 0
separablg41], and theg=(n,,n,) bend transverse eigen-

W] = i k2
states® 5(p,Y) = ¢, (p) & (¥) are determined for each, k= . and
€[0,N,—1] by solving - ..
0 Kn,
1{ d2 d K1 0
~3 d_p2+_$ +(Vx(P)_(E_Eny)) @np(p) Ko
. ) . (7)
Kp (Pnp(p) - ’
-2 @ ° T

Also required are lead-bend overlap matrigeand ' with

The resultant eigenvalues afef<f;/2, and the quantityi x matrix elements

is the angular momentum of each mode in the bénda 0
good approximation it is given bi x ;~#ikgp,). Note that Xap=(PolOp) and x,z= < D, —ﬁ>. (8)
p

the angular momentum need not be quantized since the bend
sgbtends an angle_lgss tham 2This |mpI|es_ tha_t the usuff’ll. As an example, we give the slightly strange interface match-
single-valued condition on the wave function is absent; m'ing integral
stead, the total enerdy is fixed and thenc is determined.

While the exact eigensolutions of E@) for a hard walled

bend withV,(p) =0 are known to be Bessel functiof39], X;ﬁ:J J {n (X)) én (V) em (p)ém (y)/p dxdy,  (9)

the solutions with harmonic confinement are not known.

Equation(4) is thus solved numerically usingBspline ba- ~ \yhere, due to the coordinate definitions; p on the bound-
sis. The number of bend modes included in each calculatiogries. The M, inhomogeneous linear equations are then
is Ng=N,Ny . The infinite hard wall boundary conditions in yyyitten in matrix form as

p are applied app=m and p=2py— m, ensuring that the

wave function of each region is well defined at the inner -1 0 X p% B
waveguide boundary. . ik ik -
To determine the R, + 2Nz unknown coefficients of Eq. 0 1 e € °X <!
(2) (i.e., {b.}, {94}, {cg}, and{dg}), the wave functions k 0 K x' -k x' C
and their first derivatives are matched at interface I-II: 0 k- K&y’ ﬁe_imoX_’ D
A
V(X,Y,2)|,-0="P(p.y,#)|4-0 and K H
=~ . 1
A (10)
v, (x,y,z 19¥,(p.y,
(xy,2)) - 1d%ulp,y,¢) ' 5 kK H
0z ,—0 P o $=0
Although it was not indicated in Eg2), the coefficients
actually carry an additional index to indicate the incident
and also at interface Il-IlI: channel. The coefficients can then be organized into incom-
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ing lead coefficient matriced andH, where each column TABLE I. The energy spectrum of the 1D eigenmodes trans-
corresponds to incidence in a different propagation channelerse to the direction of wave propagation for a circular bend with
By symmetry, incidence from region | gives the same result@n anisotropic 2D simple harmonic oscillator potentig) £ 0.64)

as incidence from region I, so the incoming propagatingcentered apo=4m. The horizontal leadx), horizontal bend ¢),
modes are chosen to always be from region I, k0. and vertical(y) eigenmodes are separable, with up to 25 modes
While we are specifically interested in propagatﬁn of thelnc_luded in the calculations. All energies are given in oscillator
lowest moddfin which caseA would simplify to the column ~ UNts:

vectora=(1,0,...,0) oflengthN_], we also calculate how
the lowestN/, states(with ki>0) propagate through the
bend. Furthermore, the matrix elements are choseh_,as
=644, I.€., Only single-mode incoming waves are consid-

E,(horiz) Ey(ver) E,(horiz bend

0.5000000 0.4000000 0.4992008
1.5000000 1.2000000 1.4991852

0

1
ered in this paper. The unknown outgoing lead coefficients 2 2.5000000 2.0000000 2.4991692
are grouped into the matricés and G, with the unknown 3 3.5000000 2.8000000 3.4991526
bend coefficients grouped mt@ andD. Each of the col- 4 4.5000000 3.6000000 4.4991355
umns of these unknown matrices is a solution corresponding g 9.5000000 7.6000000 9.4990405
to a specific incoming mode given by each columnAof 19 19.500000 15.600000 19.498788

For the propagating modes in the le@ck., ki>0)_ the 24 24.500000 19.600038 24.498618
transmission and reflection probabilities are calculated as the
ratio of the outgoing to the incoming flux, i.e.,

EfT:Vf o +Rn "y —1, for each of the initial modes. This
2 2 conditlon was malntained at better than 1 part iA°f6r all
2_|9f| K 2_| i °Ks i
| 74| 2= . and |Rg|%= S (11)  calculations reported here.
|ai| ki |ai| ki

Ill. RESULTS

As mentioned previously), is conserved for the potentials ~ We focus primarily on the case,=90° with po=4,

of interest here. With no mode mixing between modesand the SHO potential used is anisotropic with=0.64 in

with different n,, for simplicity, we adopt the notation Eqg.(1). This choice is intended to mimic experimental atom

|Tﬁ|2:-|-”y ~(with similar notation for reflection chip configurations in which the confining magnetic potential
The computatlonal limitations of this simple matching is slightly weaker along the vertical directidperpendicular

scheme as applied to electron transport through hard wall t(? the chip surface(1,11].
circular guides has been thoroughly investigated in the limit _
of tight bend curvature, and even for bend angles greater A. Eigenmodes

than 360°—"spiral’-type guide$43]. Essentially, numerical The energy eigenspectrum of this anisotropic potential is
problems arise when including strongly closed channelghown in Table I. For the leads, both the horizoritaland

(large|xg|) in the calculation, which generate exponentially vertical (y) eigenmodes are simply those of a one-
large terms in the set of linear equations, restricting the exdimensional simple harmonic oscillator. The horizontal mode

tension of N,=)Nz—. The ansatz used by Lin and Jaffe energies in the bend} are determined by setting=0 and
[43] offers one method for avoiding these difficulties. Nev-

ertheless, we kept the simple matching scheme for two rea-

sons. First, as the wave propagates through the bend, the g 0.04 8 g
centrifugal motion acts to push the wave function radially § 2
outward fromp=pq, but the SHO guiding potential works S 0.03 | g
against this shift by localizing the propagating wave around - o
p=pgo- Matching the disjointed eigenfunctions across the ‘E 0.02 43
lead-bend interfaces is then somewhat less dramatic than is  «_ o~
seen for the tight electron waveguide bends, and hence fewer Z 001 G
channels are necessary in the present calculations for ad- £ ;&cc-
equate convergence. Second, the maximum bend angle ex- 0 ; S
amined here is 180°, and since the exponential matrix ele- 6 8 10 12 14 16 18 20

ments of Eq(10) containkz¢, terms, the exponential terms P

included in here are smaller than those required for the FIG. 2. The bend eigenfunction probability densnjeg (p)|?
greater than 360° guides. of Eqg. (4) with n,=0,1,9. Two sets of curves are given. "First the
The transmission and reflection probability calculationssolid lines are the thresholdkg =0) eigensolutiongthe corre-
were first validated for various geometries by repeating pubsponding energy eigenvalues are given inEheolumn of Table ).
lished 2D bend calculationgt1,43,44,46 Convergence of Second, the dashed lines are the corresponBin7 eigensolu-
the numerical solutions with respect to the number oftions with the vertical mode fixed as,=0. Generally the bend
channels was monitored using the unitarity conditioneigenfunctions slosh outward as the energy is increased.
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TABLE 1l. The combined 2D transversgorizontah-vertical [w(x,y=0,2)|2
energy thresholds of the lead and bend modes, given the same 1
waveguide geometry as in Table I. Note that only modes with the 0.8
same vertical numbem() can couple when propagating through 0.6
the bend. All energies are given in oscillator units. 8‘2
Mode (0, ,n,) E(lead E(bend LT
0,0 0.9000000 0.8992008 *
0,1 1.7000000 1.6992008 FIG. 3. Then,=0 bound state probability density:(x,y,z)|?
1,0 1.9000000 1.8991852 of a 90° SHO bend witlpy= 4 taken as a slice through=0. The
0,2 2 5000000 24992008 bend, which is the region>0 andz>0, is seen to have a sym-
1,1 2 7000000 2 6991852 metric (p_ut very weakly bo_u_nhbound state, strongly confined to
2.0 2 9000000 2 8991692 the position of the SHO minima aiy=4.
99 17.100000 17.098951
19, 19 35.100000 35.098788 waveguides with an angle less than 360° support at most one
24, 24 44.100038 44.098656 bound statd43]. For the 3D case, sinag, is a good quan-

tum number in our model, one bound state exists for each
ny, with the energy of each bound state located between the
En,=0 and finding the resultant eigenenergies of 4.  lead and the bend energy thresholds for the moda, )0,
These results are thus independentof and are also shown Moreover, becausa, enters Eq(4) only to shift the zero of
in Table |. The effect of having boundary conditions imposedtN® €nergy, every bound state has the same binding energy.
is barely seen in the marginal deviation of tie=24 verti- Each bound state calculation thus requires the condition

cal mode eigenenergy from that of the ideal SHO eigenen&«="N.=0 for all modes. The H,X 4N, matrix M in Eq.
ergy. (10), however, cannot be diagonalized sireés manifested

To provide some idea of what the horizontal bend eigen_nonlinearly in the matrix elements. Thus, to solve the set of
functions look like, the threshold eigenfunctions<0) are linear equations an additional constraint is required to ensure

shown forn,=0,1,9 as the solid lines in Fig. 2, bearing a that the trivial solution ¢s=ds=b,=g,=0) is avoided.
similarity to the(not shown, but well knowmn,=0,1,9 ideal The simplest method is to use a two-step approach: first, the

SHO solutions. However, the asymmetry of the thresholcEN€rgy is varied until the condition déd)=0 is satisfied,
bend eigenfunctions ip is produced by the attractid/dp ~ Yi€lding the bound state enerdy, [41]; second, the wave

term in the Schidinger equation in the berf&g. (4)]. The functio_n coefficients_are calculated using tkig and adding
n,=0,1,9 horizontal eigenfunctions foE=27 (with n, a" arbitrary constraint, e.gco, =0.25, to Eq.(10), where
=0) are shown as the dashed lines in Fig. 2. As the energy iy is the quantum number corresponding to the bound state
increased, the bend eigenfunctions increasingly slosh outocated atE,. This extra equation results in an overdeter-
ward from the SHO minima ap,=4. There is also an mined system which, when solved with a least-squares pro-
asymmetry in theE=27 eigenfunctions, i.ee, (p)|? is  cedure, finds the nontrivial solution. In essence, the equation
larger for p<4ar than for p>4. This is due to theE £ 0 Con,#0 acts as an arbitrary wave function normalization.
eigenstate normalization, i.€.¢,, |1/p?| @y, y=1. Of impor- It should be noted that, due to the exponential terms of the
! & gtrongly closed channels, using double-precision arithmetic it
iIs impossible to locate the exact enerds, at which
det(M)=0. Instead, the energy is scanned for the location at
.which there is a dip in del{) over a few orders of magni-
Y0de. The bound state calculations were validated by repro-
ducing the results for 2D hard walled circular electron
ﬁ/aveguides with varyingb, and pg [41,43,44,4% For the

tance for matching the wave functions, in which these ben
functions are mapped onto lead SHO eigenfunctignxsx)

nificantly overlap with the center of the SHO waveguide.

The propagation threshold energy of each transvers
mode corresponding tan(,n,) in the leads andr(, ,n,) in 3 o o : _

. : : i . D SHO 90° bend wittpg=4m (with N,=10X3 modes,

the bend is shown in Table Il. It is evident in both Tables Ithe lowest three bound states were located Ej

and Il that the energy of propagation in the bend is always_ gq9 9034518, 1.6999034518, and 2.4999034518,
slightly lower than that of the corresponding lead mode.

which gives the same binding energy 0.000 096 548 2 rela-
tive to each of their lowest propagation thresholds as ex-
pected. The 3D bend with SHO confinement, and only a
That a bend connected to infinite leads supports a weaklgingle channel included in the calculation, gives binding by
bound statg38,39 can be understood from the bend lower- an energy of 0.000 102 685 9. A small amount of mode cou-
ing the energy thresholds relative to the leads. In othepling is thus needed to describe the circular bend bound
words, these bound states occur when a wave has enougtates due to the interface mismatching in Eg). between
energy to propagate in the bend(>0), but remains below ¢n (p) and the SHO lead eigenfunctions &f (x).
the propagation threshold in the lead=., k§<0). It has The E,, that minimizes det{l) also corresponds exactly
been found that 2D, hard walled, circular electronto the energy at which the least-squares residual of the matrix

B. Bound states
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M (supplemented witmovny=0.25) is the smallest. It is ob- 1 0. o
served that the coefficientd{( andg,) become equal at this = g'g 00 TTS——00
energy, consistent with a bound state of even symmetry 004 0 Tiam -
about the midpoint of the bend @t= ¢,/2. For the 3D SHO " 02 H-(a) Tig 707 =
90° bend withp,=4 the probability density of they,=0 0 —2*1—]-”**
bound state throughy=0 slice can be seen in Fig. 3. Since 1 )
the binding energy is so small, the bound state extends a long & 8:2 Too
way into the leads—which is the basis of tidinite leads 0.4 1

. . (h) N AP
assumption. However, the transverse profile of the wave 0-(2) A e 10 e

function shown in Fig. 3 is consistent with the dominant
mode beingn,=0.

These results can be contrasted with those given by a
simple approximation. It has been demonstrated that a circu-
lar bend can be approximated by a “straight,” attractive, fi-
nite square well in the direction of propagatif$9,42. De-
fining the bend curvature a€= ¢y/zp=1/py (where the
bend lengttzy= py ), the effective square bend potential is
given in Cartesian coordinates by

1 15 2 25 3 35 4 45 5
E (osc. units)

FIG. 4. Transmission and mode-conversion probabiliﬁ%@ .

for a 90° SHO bend wittpy=47 as a function of energ{in os-
cillator unitg. The incoming (,,n,) modes are restricted to the
three lowest-energy modes given in Table Il, with #®0) and
(1,00 modes shown irfa), and the(0,1) mode shown separately in
(b). Of primary interest is the transmission probabiﬂt&o, which

is the probability of entering in then(;=0,n,=0) ground state

CZ
mode, and exiting in the same modg,{=0,n,=0).

1
Vi(x.y,2) = 5mo?[(x=po)+ \jy?*]— 5, 0<z<z.

(12) tially in the ground state, with the transmission probabilities
Furthermore, given that the angle of the bends under consid®" the (0,0 mode given in Fig &). Transmission probabili-
eration is less than 360°, the approximate attractive finitdi€S for the first two excited states as the incoming modes are
square well supports only one bound st&t8], and simple als_o given; thé1,0) mode results are also shown in Flg_a)4 _
(transcendentalexpressions for the bound state energy canVNile the (0,1) mode results are shown separately in Fig.
be applied[42,47. Numerically locating the unknown mo- 4(P)- Note that for these C?‘|CU|at!°m$a:%OX2' _

the probability of a ground stat®,0) matter wave propagat-
[2mV(2)] a @)
hz q _q 2

ing through the bend and exiting in the same ground state
mode. AtE=4.9, the modd4,0) becomes energetically ac-
cessible, thus over the energy range seen in Figs. 4 and 5

gives the bound state energy frong?=2m{|V,(2)]

—Ey}/h2>0. This approximate model for thg,=90° bend

with pg=4m results inqz,/2=0.366 610, giving a binding

there are four other lead modes that mg@@e) can couple
with. From the threshold of mod&,0) propagation at=

energy of 0.0001017. As further program validation, the

same attractive square well potential was run, givin

=0.9, Tgvo rapidly rises to perfect transmission as the energy
is increased. Unit transmission is predictably maintained
0.0001017047 relative to the mod8,0) threshold ofE
=0.9 [there is no mode coupling in this model, so a single

(13

while the energy remains below the threshold of the first
Yaccessible excited modd,0 at E=1.9. As the energy is

(N,=1X1) channel calculation sufficks 1
Leboeuf and Pavloff37] have applied the single-channel 107
square well model to study bound states of many interacting 102 Rl
atoms in a bend. Using the Gross-Pitaevskii equation, they % . 3 ’
showed that in the presence of atom-atom interactions a  »% 1°
bound state still exists. Given typical experimental param- o P\&O
eters they further estimated the number®4§Rb atoms that 108 PV
such circular bends can support in the bound state to be of - . 1
the order of 7—70. Since the present method explicitly as- 10 WV“- iy
sumes no atom-atom interactions, it is beyond the scope of 107 . i i

this work to verify their results.

C. Scattering (transmission, reflection, and mode-transfey

FIG. 5. Reflection probabilitiesREyf'

1 15

E (osc. units)

n

~for a 90° SHO bend

Figures 4 and 5 display the core results of this paper; thg;ith =4 as a function of energgin oscillator units. The in-

tl’ansmiSSion a.nd reﬂection probabilities Of the 90° bend W|t|’bom|ng (nx,ny) modes are restricted to the lowest three modes

po=4m at low energies 0 8E<5.0. While there are 16 given in Table Il. Apart from threshold and resonant spikes, all
modes energetically allowed at the end of this energy rangeeflection probabilities are significantly smaller than the corre-
here the focus is on when the incoming matter wave is inisponding transmission probabilities seen in Fig. 4.
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FIG. 6. Transmissiofg, and reflection probabilitieR] , for a FIG. 7. TranSmiSSiorTzzf'nxi and reflection probabilitieezif .

90° SHO bend wittpy=4 at energies just above the mo@&0)  for a 90° SHO bend witlpo=4 at energies surrounding the mode
propagation threshold &=0.9 (all energies in oscillator units (1,00 propagation threshold @ =1.9 (all energies in oscillator
The crosses are the transmission probabilities given by(E4). units). Mode (0,1) is not shown as it is unaffected by the presence
resulting from approximating the circular bend with the attractive of the n,=0 modes.

square well potential of Eq13).

The behavior of the transmission and reflection probabili-
ties near the ground state propagation threshold can be seen
in Fig. 6, with the transmission probability rapidly rising to
comes energetically open &=2.9, TO  decreases more unity.from theE=0.9threshoId.AIso included as the crosses

SO 700 ~~ on Fig. 6 are calculations resulting from approximating the
sharply, primarily because of the mode transfer seen in thBend with the attractive square potential of Ei). These

; 0

increase off; and to a lesser extent I ;. To demonstrate  are calculated using the incoming propagation energy of the

that mode transfer remains a small effect below the thirdyround state waveE,=E—Eg, -1y~ E( -1y, then k?

mode threshold, other bend parameters are examined later._ 2 2 . e .
Importantly, though, the reflection probabilities for the =2mE/h" and q —2m[Ek+_|_VZ(z)|]/h - The single-

- ..~ channel transmission probability can then be written as

ny=0 andn,=1 modes shown in Fig. 5 are generally insig- 42,47

nificant across the entire energy range, suggesting that mo&e '

transfer is the dominant source of loss from single-mode o

propagation at low energies. These results for the 3D SHO Too=

waveguide potential are consistent with previous investiga-

tions of ballistic 2D electron propagation through bend

where the walls are “soft[46]. In that study, instead of the

confining potential suddenly going to an infinite value, it was

increased abové&E=1.9, a small oscillation due to mode
transfer can be seen Tﬁ‘{qo. Once the third modé¢2,0) be-

(2kg)?
(2k)?c0g(qz,) + (g% +k?)Zsir?(qz,)

(14)

SThe results of this approximation in Fig. 6 clearly demon-
strate that the simple 1D approximation to the bend repro-

- , . duces the physics of the bend remarkably well while the
found that even a large but finite potential waveguide wall X . .
energy of the bend is such that there is only a single open

reduces the amount of both reflection and mode mixing. :
. . ) . 2" . channel in the leads.
Another feature seen in both Figs. 4 and 5 is the similarity DespiteT? il hi ity f threshold. th
in the transmission and reflection probability of maintaining ESPIte T o0 rapidly reacning unity from thresnoid, there
are minor resonant oscillations while the energy is still in the

propagation in the groundn(=0) state of eact, mode. éingle channel regime. These oscillations are best seen in the
T4, for example, exhibits the same characteristic chan ) :
o0 for example, exhibits the same characteristic changg,q. o, probabilities of botlRg , and R, of Fig. 5 below

}/;ltif;];rézrsgg dai)oc’)?/.eB&tgirra:zfliglfveeto rlém;y Z’f;c;[rrlletr?r 22;1931 dtheir first excitation thresholds. These oscillations correspond
P propag % those resulting from the sinusoidal terms in Efl). Gen-

comes subsianial af onergios where wio hgher mories afLEllk Wave scatering from an atacive 1D square well
; "9 ; 9 otential results in such resonances, where perfect transmis-
energetically open to the incoming wave. This supports the. hen the width of th I h ; |
result that, withn, as a good quantum number, the physics of>'on oceurs W en the width of the well matches an integral or
. Y . " alf-integral number of de Broglie wavelengths in the well
the 3D circular bend can effectively be considered as a 2

roblem 47,48,
P : The transmission and reflection probabilities near the

mode(1,0) threshold E=1.9) are shown in Fig. 7. The be-
havior of Ttl)'l shows a smooth increase from threshold to-
The sharp resonance spikes in the transmission and refleasard unity. The energy range also covers the resonance just
tion probabilities seen in Figs. 4 and 5 near the thresholds dfelow this threshold where total reflection of md@e0) oc-
propagation are examined in depth in this section. Many oturs. As was the case for the bound state energy, the posi-
the features characterized for the case of 2D electron transions of the resonances are above the bend threshold, but
port[42—44], such as the behavior near mode thresholds amarginally below the lead thresholdee Table . This reso-
well as the characteristics of the resonances, apply here. nance is thus a Feshbach resonance generated through the

D. Thresholds and resonances
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FIG. 8. Transmissioff ) and reflection probabllltleRan’nxi FIG. 9. Transmissioﬁ’zyf and reflection probabilitie@ﬂyf N
Xt Xt

for a 90° SHO_bend witlpg=47 at energies surrqunqing tht_e mode for a SHO bend withp, =

(Z,Q) propagation threshold d@=2.9 (all energies in o_s_c_lllator lator unit9 as a function of bend anglé, (in degrees Only the

unity. Due to symmetry the mode-transfer probabiliid®, |oyest three modes in Table Il are open at this energy. Note that

=To1 RIo=RO1 T20=To2 ROo=R0 T2:=Ti, andRy; T2 ~TY., and for mode0,1) only Rb, is shown sincers ~1.

:R(l),z- Theny,=1 modes are not shown since they are unaffected

by the presence of the,=0 modes. exact energy position of the resonances also corresponds to
the energy where de¥{{) of Eq. (10) has a minimum.

A Xallt a fixed energfe=2.34(in oscixll-

coupling of the incoming propagating mode to thE0)
mode—uwhich is energetically open in the bend, but closed in )
the leads. Note that, due to its different quantum number, the E. Dependance on waveguide geometry
(0,1 mode—while it is open throughout this energy |n this final section, the dependence of transmission on
range—is unaffected by the action related to modes withoth angle and curvature is examined. The effects of varying
ny=0, and is not shown in Fig. 7. bend parameters for the 2D electron waveguide has been
The resonance and mode transfd § effects seen in investigated by Sols and Macuc@t1]. In particular, their
Fig. 7 cannot be seen in models based on the simple attragesults relating the low-energy transmission probability to
tive square well potential of E¢12). This model completely different bend angles and curvatures are qualitatively seen
ignores mode mixing since it uses the same transverse oscliere.
lation frequency in the bend as in the lead. The wave simply To demonstrate the effects of varying the bend angle on
propagates faster in the bend, which is an adequate approxhe transmission and reflection probabilities, we again use a
mation at single-channel energies. For a realistic circulatircular bend withpo=4. Both the lead and bend propa-
bend, at higher energies the wave propagates at increasinglation energies seen in Table Il remain constant as the angle
further distances from the SHO minima, resulting in an in-is varied. It is, however, worthwhile to restrict the energy to
creased mismatching of the lead-bend eigenfunctions anpelow that of the mod¢2,0) threshold(at E=2.9), so that
thus more mode transfer. only two propagating modes couple. Figure 9 shows trans-
The behavior near the mod2,0) threshold aE=2.9 can  mission, reflection, and mode-conversion probabilities for a
be seen in Fig. 8. The Feshbach resonancﬁggf at which  SHO bend at a fixedE=2.34 (with N,=10X2 mode$,
energy there is total reflection, indicates that mddg))  which was chosen to be near the local maximum of the mode
couples strongly with thg€2,00 mode in the bend. Mode transfer probabilityT‘io seen in Fig. 4. As expected,
(0,0, however, is only slightly perturbed by the presence of=0° there is perfect transmissidne., there is no bendAt
mode (2,0 propagating in the bend, which corresponds to aall angles, reflections continue to play an insignificant role
slight increase inR3, and R}y, and a variation inTJ,.  compared to the mode transfer probabili§,, which dis-
Above the (2,0 threshold,Tg2 approaches unity with the plays periodic oscillation. Depending on the bend angle,
same characteristic as that of moded®) and(1,0) shown in  mode conversion reaches a maximum of 4%, demonstrating
Figs. 6 and 8. This small effect of the mo@&0) threshold that, in general, mode transfer remains a small effect while
on mode(0,0), and the dominant mixing between adjacentthe energy of the incoming wave remains below the mode
modes, i.e.T5 >T5,, can both be understood in terms of (2,0) threshold.
the overlap of the interface wave functions; the mod®) When only two channels couple, the critical anglsat
wavefunction in the lead only weakly overlaps with mode which theT%O mode-conversion minima occur can be pre-
(2,0 in the bend. Since there is no mode coupling within thedicted by requiring that the mod®,0) and(1,0) path lengths
waveguide, all of the mode mixing occurs through thiscoincide:

matching.

The energy width of these Feshbach resonances is so (K(0,0™ K(1,0) Pc= 2N, (19
small that it may be extremely difficult to experimentally
observe a dip in the transmission to zero with a wave packevith n=0,1,2 ... . For theabove geometry witle=2.34,

that has a finite energy spread. As a theoretical side note, thesing the computed valuesco=21.424 and «(
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that reflections continue to play a minor role in the wave
propagation dynamics at energies above the m@@i@)
threshold for all these different bend geometries.

IV. CONCLUSIONS

0,0

We have shown how to apply the time-independent quan-
tum mode-matching method to describe the physics of non-
interacting low-energy atom waves propagating through cir-
cular bends. Explorations of the transmission, reflection, and
mode-transfer probabilities for different bends over a wide

E (0sC. units) range of energies have found that, while single-mode wave
propagation indeed dominates at low energies, at higher en-

FIG. 10. Ground state mod®,0) transmission probabiliti€¥o,  ergies excitation and transmission of other modes are pos-
for 90° SHO bends with different radii of curvatusg as a function  sjple. Significantly for “atom chip” designers, reflections are
of. eqergy(in oscillator unit3. \ﬁrtgally all of.the “loss” in trans- generally negligible even for sharply curved bends.
mission is due to the transmission of excited moﬂf&xs%,o where Matching the bend eigenfunctions to the lead eigenfunc-
Ny=>0. tions across the effective discontinuity at the interfaces is

) ) ) problematic, even for the long bends. It is likely that to ob-
=11.665, this estimate gives$.=0°,36.89°,73.78%, 5y true “adiabatic” wave-packet transport through wave-
110.7°, ... in agreement with the positions of ti,  guide bends, atom chip microstructures should be designed
minima shown in Fig. 9. Furthermore, using a simple ap-with a gradual transition from the leads into and out of the
proximation for the bend kinetic energy, i.ex(, n)  bend. With the recent experimental successes of BEC cre-
%ng(E_E(np,ny))a along with the bend thresholds given f'ition gind_cont_rolled propagation above _microchip_surfaces,
by Table II, gives,=0°,37.8°,75.5°,113.3°, in reasonable |nvest|g::_1t|ons in the regime of propag_auo_n velocm_es com-
agreement with Fig. 9. parable in energy to the transverse excitation energies should

Finally, and perhaps most relevant to experiments, Fig. 16“39 avoid many of the manifestations of mode transfer ex-
shows the transmission probability of the ground state mod@mlned _he_re. . :
for a ¢po="90° bend with the radius of curvature varied be- A majority of the 3D circular bend SHO waveguide re-
tween the relatively tight bend used throughout this pape ults demonstrated here are qualltatlvely.smllar to t_hose well
(po=41), an intermediate bendpf=107), as well as a <1OWN in the context of electromagnetic waveggldes and
longer bend ;= 167). The energy range was also extendedba”'St'C electron transport through quantum wires. The

well beyond that of Fig. 4, up to a maximum &= 30 present paper highlights that the same rich array of physics,

Numerical convergence with such a large number of chansuch as bound states and Feshbach resonances, will also im-

nels energetically opef#84 channels & = 30) required the pact ultracold atom propagation through wa\_/eguides. How-

inclusion of N,=25X1 channels, since onlg,=0 modes ever, as a dampen!ng note, the direct exper_lm(_antal observa-

are of interesta ' y tion of an energetically narrow resonant dip in the wave
At low enefgies, the behavior of the transmission prob_transmission that was observed over ten years ago with elec-

ability for all curves is virtually identical, with the different t_romag_netic waveguided9] may prove to _be extremely dif-

2 0 . . ficult with a matter wave packet propagating through a bend.
positions of theTy, resonances unable to be discerned in The present results emohasizing conditions for sindle-
Fig. 10. Above the mode2,0) threshold aE=2.9, there are P P 9 9

. . . _ mode wave propagation through circular bends can also pro-
|(j|fferences 'E both the phqse and amp::tude Oftaﬁ oscil- vide some insight into current ultracold atom investigations,
ations. As the energy is increased, the two tightest bend§ o gEc propagation past a spatial defect in the waveguide
resulted in near 100% mode transfer aro&@xd20, and even [36], or the propagation of atoms around a stadium with

for the largep= 16w bend there is a significant amount of caight sides and circular benid], where bound states and
loss through mode transfer in this energy range. As expectethiertace discontinuities may occur. The extension of the

the longer the bend, the more adiabatic is the leap across theesent time-independent method to treat such geometries is
lead-bend interface. Even for large bends, however, the dissminently feasible. Furthermore, imperfections and inter-
continuity still impacts the amount of mode transfer at high o mic collisions provide a mechanism for mode transfer,

energies. This_ complete saturation of mode transfer for all of,4 5 time-dependent wave-packet approach that can include
these bends is not only due _to.the large number of opeRiom_atom interactions is probably of more interest for
channels at these high energies; retuming to Fig. 2, as thgesent experimental configurations. Both of these theoreti-

energy is increased to such high energies, the maximum Qfy| apnroaches would also enable the examination of more
the mode(0,0) eigenfunction in the bend is located a long complicated and unusual atom chip devices.

distance fronp=p,. There is furthermore almost no overlap
of the E=27 eigenmode with the center of the waveguide,
resulting in complete mismatching at the lead-bend inter-
faces, leaving no chance of single-mode transmission. Al- This work was supported by the Department of the Navy,
though it is not shown here, it should again be emphasize®ffice of Naval Research, and by the Research Corporation.
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