1,405 research outputs found

    Space-time translational gauge identities in Abelian Yang-Mills gravity

    Full text link
    We derive and calculate the space-time translational gauge identities in quantum Yang-Mills gravity with a general class of gauge conditions involving two arbitrary parameters. These identities of the Abelian group of translation are a generalization of Ward-Takahasi-Fradkin identities and important for general discussions of possible renormalization of Yang-Mills gravity with translational gauge symmetry. The gauge identities in Yang-Mills gravity with a general class of gauge conditions are substantiated by explicit calculations.Comment: 15 pages. To be published in The European Physical Journal - Plus (2012

    Quantum Yang-Mills gravity in flat space-time and effective curved space-time for motions of classical objects

    Full text link
    Yang-Mills gravity with translational gauge group T(4) in flat space-time implies a simple self-coupling of gravitons and a truly conserved energy-momentum tensor. Its consistency with experiments crucially depends on an interesting property that an `effective Riemannian metric tensor' emerges in and only in the geometric-optics limit of the photon and particle wave equations. We obtain Feynman rules for a coupled graviton-fermion system, including a general graviton propagator with two gauge parameters and the interaction of ghost particles. The equation of motion of macroscopic objects, as an N-body system, is demonstrated as the geometric-optics limit of the fermion wave equation. We discuss a relativistic Hamilton-Jacobi equation with an `effective Riemann metric tensor' for the classical particles.Comment: 20 pages, to be published in "The European Physical Journal - Plus"(2011). The final publication is available at http://www.epj.or

    The physical basis of natural units and truly fundamental constants

    Full text link
    The natural unit system, in which the value of fundamental constants such as c and h are set equal to one and all quantities are expressed in terms of a single unit, is usually introduced as a calculational convenience. However, we demonstrate that this system of natural units has a physical justification as well. We discuss and review the natural units, including definitions for each of the seven base units in the International System of Units (SI) in terms of a single unit. We also review the fundamental constants, which can be classified as units-dependent or units-independent. Units-independent constants, whose values are not determined by human conventions of units, may be interpreted as inherent constants of nature.Comment: 17 pages, to be published in European Physical Journal-Plus, The final publication is available at www.epj.or

    Volume Stabilization and the Origin of the Inflaton Shift Symmetry in String Theory

    Full text link
    The main problem of inflation in string theory is finding the models with a flat potential, consistent with stabilization of the volume of the compactified space. This can be achieved in the theories where the potential has (an approximate) shift symmetry in the inflaton direction. We will identify a class of models where the shift symmetry uniquely follows from the underlying mathematical structure of the theory. It is related to the symmetry properties of the corresponding coset space and the period matrix of special geometry, which shows how the gauge coupling depends on the volume and the position of the branes. In particular, for type IIB string theory on K3xT^2/Z with D3 or D7 moduli belonging to vector multiplets, the shift symmetry is a part of SO(2,2+n) symmetry of the coset space [SU(1,1)/ U(1)]x[SO(2,2+n)/(SO(2)x SO(2+n)]. The absence of a prepotential, specific for the stringy version of supergravity, plays a prominent role in this construction, which may provide a viable mechanism for the accelerated expansion and inflation in the early universe.Comment: 12 page

    Counting fermionic zero modes on M5 with fluxes

    Full text link
    We study the Dirac equation on an M5 brane wrapped on a divisor in a Calabi--Yau fourfold in the presence of background flux. We reduce the computation of the normal bundle U(1) anomaly to counting the solutions of a finite--dimensional linear system on cohomology. This system depends on the choice of flux. In an example, we find that the presence of flux changes the anomaly and allows instanton corrections to the superpotential which would otherwise be absent.Comment: 14 pages. v2: reference added, typos corrected, few change

    Volume Stabilization via αâ€Č\alpha^\prime Corrections in Type IIB Theory with Fluxes

    Full text link
    We consider the Type IIB string theory in the presence of various extra 7/7ˉ7/\bar 7-brane pairs compactified on a warped Calabi-Yau threefold that admits a conifold singularity. We demonstrate that the volume modulus can be stabilized perturbatively at a non-supersymmetric AdS4/dS4AdS_4/dS_4 vacuum by the effective potential that includes the stringy (αâ€Č)3(\alpha^\prime)^3 correction obtained by Becker {\it et al.} together with a combination of positive tension and anomalous negative tension terms generated by the additional 7-brane-antibrane pairs.Comment: 20 pages, 4 figures, parts of introduction and conclusions are modifie

    Kahler Moduli Inflation

    Full text link
    We show that under general conditions there is at least one natural inflationary direction for the Kahler moduli of type IIB flux compactifications. This requires a Calabi-Yau which has h^{2,1}>h^{1,1}>2 and for which the structure of the scalar potential is as in the recently found exponentially large volume compactifications. We also need - although these conditions may be relaxed - at least one Kahler modulus whose only non-vanishing triple-intersection is with itself and which appears by itself in the non-perturbative superpotential. Slow-roll inflation then occurs without a fine tuning of parameters, evading the eta problem of F-term inflation. In order to obtain COBE-normalised density perturbations, the stabilised volume of the Calabi-Yau must be O(10^5-10^7) in string units, and the inflationary scale M_{infl} ~ 10^{13} GeV. We find a robust model independent prediction for the spectral index of 1 - 2/N_e = 0.960 - 0.967, depending on the number of efoldings.Comment: 17 pages, 1 figure; v2. references adde

    An index for the Dirac operator on D3 branes with background fluxes

    Get PDF
    We study the problem of instanton generated superpotentials in Calabi-Yau orientifold compactifications directly in type IIB string theory. To this end, we derive the Dirac equation on a Euclidean D3 brane in the presence of background fluxes. We propose an index which governs whether the generation of a superpotential in the effective 4d theory by D3 brane instantons is possible. Applying the formalism to various classes of examples, including the K3 x T^2/Z_2 orientifold, in the absence and presence of fluxes, we show that our results are consistent with conclusions attainable via duality from an M-theory analysis.Comment: Fermion coupling to five-form restored, conclusions of the paper unchange

    Poly-instanton Inflation

    Get PDF
    We propose a new inflationary scenario in type IIB Calabi-Yau compactifications, where the inflaton is a K\"ahler modulus parameterising the volume of an internal four-cycle. The inflaton potential is generated via poly-instanton corrections to the superpotential which give rise to a naturally flat direction due to their double exponential suppression. Given that the volume mode is kept stable during inflation, all the inflaton-dependent higher dimensional operators are suppressed. Moreover, string loop effects can be shown to be negligible throughout all the inflationary dynamics for natural values of the underlying parameters. The model is characterised by a reheating temperature of the order Trh≃106T_{\rm rh}\simeq 10^6 GeV which requires Ne≃54N_e \simeq 54 e-foldings of inflation. All the inflationary observables are compatible with current observations since the spectral index is ns≃0.96n_s \simeq 0.96, while the tensor-to-scalar ratio is r≃10−5r\simeq 10^{-5}. The volume of the Calabi-Yau is of order 10310^3 in string units, corresponding to an inflationary scale around 101510^{15} GeVComment: 20 pages, 4 figure
    • 

    corecore